Multilevel Monte Carlo Finite Volume Methods for Random Conservation Laws with Discontinuous Flux

We consider conservation laws with discontinuous flux where the initial datum, the flux function, and the discontinuous spatial dependency coefficient are subject to randomness. We establish a notion of random adapted entropy solutions to these equations and prove well-posedness provided that the spatial dependency coefficient is piecewise constant with finitely many discontinuities. In particular, the setting under consideration allows the flux to change across finitely many points in space whose positions are uncertain. We propose a single- and multilevel Monte Carlo method based on a finite volume approximation for each sample. Our analysis includes convergence rate estimates of the resulting Monte Carlo and multilevel Monte Carlo finite volume methods as well as error versus work rates showing that the multilevel variant outperforms the single-level method in terms of efficiency. We present numerical experiments motivated by two-phase reservoir simulations for reservoirs with varying geological properties.

[1]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[2]  Adrian Montgomery Ruf,et al.  Flux-stability for conservation laws with discontinuous flux and convergence rates of the front tracking method , 2020, ArXiv.

[3]  Bruno Després,et al.  Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..

[4]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[5]  Siddhartha Mishra Convergence of Upwind Finite Difference Schemes for a Scalar Conservation Law with Indefinite Discontinuities in the Flux Function , 2005, SIAM J. Numer. Anal..

[6]  Raimund Bürger,et al.  An Engquist-Osher-Type Scheme for Conservation Laws with Discontinuous Flux Adapted to Flux Connections , 2009, SIAM J. Numer. Anal..

[7]  John D. Towers,et al.  Convergence of a Godunov scheme to an Audusse–Perthame adapted entropy solution for conservation laws with BV spatial flux , 2020, Numerische Mathematik.

[8]  M. Chial,et al.  in simple , 2003 .

[9]  John D. Towers Convergence of a Difference Scheme for Conservation Laws with a Discontinuous Flux , 2000, SIAM J. Numer. Anal..

[10]  N. Risebro,et al.  A Theory of L1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux , 2010, 1004.4104.

[11]  Benedetto Piccoli,et al.  A General BV Existence Result for Conservation Laws with Spatial Heterogeneities , 2018, SIAM J. Math. Anal..

[12]  N. Risebro,et al.  A front tracking method for conservation laws in one dimension , 1992 .

[13]  N. Risebro,et al.  Solution of the Cauchy problem for a conservation law with a discontinuous flux function , 1992 .

[14]  Nils Henrik Risebro,et al.  STABILITY OF CONSERVATION LAWS WITH DISCONTINUOUS COEFFICIENTS , 1999 .

[15]  B. Perthame,et al.  Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  P. I. Richards Shock Waves on the Highway , 1956 .

[17]  Siddhartha Mishra,et al.  Conservation law with the flux function discontinuous in the space variable-II , 2007 .

[18]  Nils Henrik Risebro,et al.  Front Tracking Applied to a Nonstrictly Hyperbolic System of Conservation Laws , 1991, SIAM J. Sci. Comput..

[19]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[20]  Christian Klingenberg,et al.  A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units , 2003 .

[21]  Christian Klingenberg,et al.  Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior , 1995 .

[22]  G E Karniadakis,et al.  The stochastic piston problem. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  William G. Gray,et al.  General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations , 1979 .

[24]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[25]  Rémi Abgrall A simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: application to fluid flow problems , 2008 .

[26]  Xin Wen,et al.  Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients I : L 1-error estimates , 2007 .

[27]  K. Kadlec,et al.  Stochastic Evolution Equations , 2013 .

[28]  Giuseppe Maria Coclite,et al.  Conservation Laws with Time Dependent Discontinuous Coefficients , 2005, SIAM J. Math. Anal..

[29]  Raimund Bürger,et al.  Sedimentation and suspension flows: Historical perspective and some recent developments , 2001 .

[30]  John D. Towers,et al.  L¹ STABILITY FOR ENTROPY SOLUTIONS OF NONLINEAR DEGENERATE PARABOLIC CONVECTION-DIFFUSION EQUATIONS WITH DISCONTINUOUS COEFFICIENTS , 2003 .

[31]  John D. Towers An existence result for conservation laws having BV spatial flux heterogeneities - without concavity , 2020 .

[32]  T. Gimse Conservation laws with discontinuous flux functions , 1993 .

[33]  John D. Towers A Difference Scheme for Conservation Laws with a Discontinuous Flux: The Nonconvex Case , 2001, SIAM J. Numer. Anal..

[34]  Adrian Montgomery Ruf,et al.  Convergence rates of monotone schemes for conservation laws with discontinuous flux , 2019, SIAM J. Numer. Anal..

[35]  Christoph Schwab,et al.  Correction to: Multilevel Monte Carlo front-tracking for random scalar conservation laws , 2017, BIT Numerical Mathematics.

[36]  Svetlana Tokareva,et al.  Numerical Solution of Scalar Conservation Laws with Random Flux Functions , 2016, SIAM/ASA J. Uncertain. Quantification.

[37]  Arnulf Jentzen,et al.  Convergence in Hölder norms with applications to Monte Carlo methods in infinite dimensions , 2020, IMA Journal of Numerical Analysis.

[38]  John D. Towers,et al.  Upwind difference approximations for degenerate parabolic convection–diffusion equations with a discontinuous coefficient , 2002 .

[39]  John D. Towers,et al.  Convergence of a Godunov scheme for degenerate conservation laws with BV spatial flux and a study of Panov type fluxes , 2020, Journal of Hyperbolic Differential Equations.

[40]  Christian Klingenberg,et al.  Stability of a Resonant System of Conservation Laws Modeling Polymer Flow with Gravitation , 2001 .

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[43]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[44]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[45]  Nils Henrik Risebro,et al.  A note on reservoir simulation for heterogeneous porous media , 1993 .

[46]  William G. Gray,et al.  General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. , 1980 .

[47]  M J Lighthill,et al.  ON KINEMATIC WAVES.. , 1955 .

[48]  Jeroen A. S. Witteveen,et al.  An adaptive Stochastic Finite Elements approach based on Newton–Cotes quadrature in simplex elements , 2009 .

[49]  John D. Towers,et al.  CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME AND STABILITY FOR CONSERVATION LAWS WITH A DISCONTINUOUS SPACE-TIME DEPENDENT FLUX , 2004 .

[50]  Siddhartha Mishra,et al.  OPTIMAL ENTROPY SOLUTIONS FOR CONSERVATION LAWS WITH DISCONTINUOUS FLUX-FUNCTIONS , 2005 .

[51]  William G. Gray,et al.  General conservation equations for multi-phase systems: 4. Constitutive theory including phase change , 1983 .

[52]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[53]  Adimurthi,et al.  Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux , 2011 .

[54]  Jan S. Hesthaven,et al.  Uncertainty analysis for the steady-state flows in a dual throat nozzle , 2005 .

[55]  Adrian Montgomery Ruf,et al.  The Optimal Convergence Rate of Monotone Schemes for Conservation Laws in the Wasserstein Distance , 2018, Journal of Scientific Computing.

[56]  N. Risebro,et al.  Multilevel Monte Carlo for Random Degenerate Scalar Convection Diffusion Equation , 2013, 1311.1752.

[57]  Randall J. LeVeque,et al.  Tsunami modelling with adaptively refined finite volume methods* , 2011, Acta Numerica.

[58]  Wen Shen,et al.  On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding , 2017 .

[59]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[60]  M J Lighthill,et al.  On kinematic waves II. A theory of traffic flow on long crowded roads , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[61]  B. Rozovskii,et al.  Stochastic evolution equations , 1981 .

[62]  N. Risebro,et al.  A multilevel Monte Carlo finite difference method for random scalar degenerate convection–diffusion equations , 2017 .

[63]  Stefan Diehl,et al.  A conservation Law with Point Source and Discontinuous Flux Function Modelling Continuous Sedimentation , 1996, SIAM J. Appl. Math..

[64]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[65]  William G. Gray,et al.  General conservation equations for multi-phase systems: 1. Averaging procedure , 1979 .

[67]  John D. Towers,et al.  Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition , 2017 .

[68]  Xin,et al.  CONVERGENCE OF AN IMMERSED INTERFACE UPWIND SCHEME FOR LINEAR ADVECTION EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS I: L 1 -ERROR ESTIMATES * , 2008 .

[69]  B D Greenshields,et al.  A study of traffic capacity , 1935 .

[70]  M. Veraar,et al.  Stochastic evolution equations in UMD Banach spaces , 2008, 0804.0932.

[71]  Alexandre Ern,et al.  Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems , 2010, J. Comput. Phys..

[72]  Jonas Sukys,et al.  Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws , 2013, Uncertainty Quantification in Computational Fluid Dynamics.

[73]  Helge Kristian Jenssen,et al.  Well-Posedness for a Class of 2_2 Conservation Laws with L Data , 1997 .