Role Forgetting for ALCOQH(universal role)-Ontologies Using an Ackermann-Based Approach

Forgetting refers to a non-standard reasoning problem concerned with eliminating concept and role symbols from description logic-based ontologies while preserving all logical consequences up to the remaining symbols. Whereas previous research has primarily focused on forgetting concept symbols, in this paper, we turn our attention to role symbol forgetting. In particular, we present a practical method for semantic role forgetting for ontologies expressible in the description logic ALCOQH(O), i.e., the basic description logic ALC extended with nominals, number restrictions, role inclusions and the universal role. Being based on an Ackermann approach, the method is so far the only approach for forgetting role symbols in description logics with number restrictions. The method is goal-oriented and incremental. It always terminates and is sound in the sense that the forgetting solution is equivalent to the original ontology up to the forgotten symbols, possibly with new concept definer symbols. Despite our method not being complete, performance results of an evaluation with a prototypical implementation have shown very good success rates on real-world ontologies.

[1]  Renate A. Schmidt,et al.  The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..

[2]  Carsten Lutz,et al.  Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.

[3]  Boris Motik,et al.  Reasoning over Ontologies with Hidden Content: The Import-by-Query Approach , 2012, J. Artif. Intell. Res..

[4]  Andrzej Szalas On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..

[5]  Kewen Wang,et al.  An Approach to Forgetting in Disjunctive Logic Programs that Preserves Strong Equivalence , 2014, ArXiv.

[6]  Boris Konev,et al.  Forgetting and Uniform Interpolation in Large-Scale Description Logic Terminologies , 2009, IJCAI.

[7]  Andreas Herzig,et al.  Uniform Interpolation by Resolution in Modal Logic , 2008, JELIA.

[8]  R. Reiter,et al.  Forget It ! , 1994 .

[9]  Patrick Koopmann,et al.  Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.

[10]  Renate A. Schmidt,et al.  Role Forgetting for ALCOQH ( O )-Ontologies Using an Ackermann-Based Approach , 2017 .

[11]  Patrick Koopmann,et al.  Saturated-Based Forgetting in the Description Logic SIF , 2015, Description Logics.

[12]  Kewen Wang,et al.  A Syntax-Independent Approach to Forgetting in Disjunctive Logic Programs , 2015, AAAI.

[13]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[14]  Sebastian Rudolph,et al.  (Non-)Succinctness of uniform interpolants of general terminologies in the description logic EL , 2014, Artif. Intell..

[15]  Patrick Koopmann,et al.  Uniform Interpolation and Forgetting for ALC Ontologies with ABoxes , 2014, AAAI.

[16]  Patrick Koopmann,et al.  Practical uniform interpolation for expressive description logics , 2015 .

[17]  P. Koopmann,et al.  Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .

[18]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[19]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[20]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[21]  A. Visser Bisimulations, model descriptions and propositional quantifiers , 1996 .

[22]  Boris Konev,et al.  Inseparability and Conservative Extensions of Description Logic Ontologies: A Survey , 2016, RW.

[23]  Boris Konev,et al.  Formal Properties of Modularisation , 2009, Modular Ontologies.

[24]  Jeff Z. Pan,et al.  Forgetting for knowledge bases in DL-Lite , 2010, Annals of Mathematics and Artificial Intelligence.

[25]  Renate A. Schmidt,et al.  Concept Forgetting for ALCOI-Ontologies using an Ackermann Approach , 2015, Description Logics.

[26]  A. Szałas,et al.  A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .

[27]  Carsten Lutz,et al.  An Automata-Theoretic Approach to Uniform Interpolation and Approximation in the Description Logic EL , 2012, KR.

[28]  Andrzej Szalas,et al.  Second-order reasoning in description logics , 2006, J. Appl. Non Class. Logics.

[29]  Dov M. Gabbay,et al.  Interpolation in Practical Formal Development , 2001, Log. J. IGPL.

[30]  Boris Konev,et al.  Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications to Logical Difference , 2014, KR.

[31]  Marco Hollenberg,et al.  Logical questions concerning the μ-calculus: Interpolation, Lyndon and Łoś-Tarski , 2000, Journal of Symbolic Logic.

[32]  Patrick Koopmann,et al.  Count and Forget: Uniform Interpolation of $\mathcal{SHQ}$ -Ontologies , 2014, IJCAR.

[33]  Jeff Z. Pan,et al.  ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES IN EXPRESSIVE DESCRIPTIVE LOGICS , 2014, Comput. Intell..

[34]  Renate A. Schmidt,et al.  Forgetting Concept and Role Symbols in ALCOIH μ + ( O , u )-Ontologies , 2016 .

[35]  Jeff Z. Pan,et al.  Forgetting Concepts in DL-Lite , 2008, ESWC.

[36]  Boris Konev,et al.  Model-theoretic inseparability and modularity of description logic ontologies , 2013, Artif. Intell..

[37]  Patrick Koopmann,et al.  Forgetting Concept and Role Symbols in $\mathcal{ALCH}$ -Ontologies , 2013, LPAR.