Impact of redshift information on cosmological applications with next-generation radio surveys

In this paper, we explore how the forthcoming generation of large-scale radio continuum surveys, with the inclusion of some degree of redshift information, can constrain cosmological parameters. By cross-matching these radio surveys with shallow optical to near-infrared surveys, we can essentially separate the source distribution into a low- and a high-redshift sample, thus providing a constraint on the evolution of cosmological parameters such as those related to dark energy. We examine two radio surveys, the Evolutionary Map of the Universe (EMU) and the Westerbork Observations of the Deep APERTIF Northern sky (WODAN). A crucial advantage is their combined potential to provide a deep, full-sky survey. The surveys used for the cross-identifications are SkyMapper and Sloan Digital Sky Survey, for the southern and northern skies, respectively. We concentrate on the galaxy clustering angular power spectrum as our benchmark observable, and find that the possibility of including such low-redshift information yields major improvements in the determination of cosmological parameters. With this approach, and provided a good knowledge of the galaxy bias evolution, we are able to put strict constraints on the dark energy parameters, i.e. w_0 = −0.9 ± 0.041 and w_a = −0.24 ± 0.13, with Type Ia supernovae and cosmic microwave background priors (with a one-parameter bias in this case); this corresponds to a Figure of Merit (FoM) >600, which is twice better than what is obtained by using only the cross-identified sources and greater than four time better than the case without any redshift information at all.

[1]  M. Bartelmann The Dark Universe , 2009, 0906.5036.

[2]  A. Hopkins,et al.  Science with ASKAP , 2008, 0810.5187.

[3]  L. Miller,et al.  A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.

[4]  N. Davey,et al.  Photometric redshift estimation using Gaussian processes , 2009 .

[5]  C. Blake,et al.  Angular clustering in the SUMSS radio survey , 2003, astro-ph/0310115.

[6]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[7]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[8]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[9]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[10]  Daniel J. B. Smith,et al.  The likelihood ratio as a tool for radio continuum surveys with Square Kilometre Array precursor telescopes , 2012, 1202.1958.

[11]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[12]  J. Trump,et al.  DISSECTING PHOTOMETRIC REDSHIFT FOR ACTIVE GALACTIC NUCLEUS USING XMM- AND CHANDRA-COSMOS SAMPLES , 2011, 1108.6061.

[13]  Ofer Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .

[14]  M. Way,et al.  Novel Methods for Predicting Photometric Redshifts from Broadband Photometry Using Virtual Sensors , 2006 .

[15]  Wayne Hu,et al.  Weak lensing of the CMB: A harmonic approach , 2000, astro-ph/0001303.

[16]  Huub Röttgering,et al.  LOFAR, a new low frequency radio telescope , 2003 .

[17]  J. Conway,et al.  LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters , 2011, 1107.1606.

[18]  Spergel,et al.  Cosmological-parameter determination with microwave background maps. , 1996, Physical review. D, Particles and fields.

[19]  M. Jarvis,et al.  An infrared–radio simulation of the extragalactic sky: from the Square Kilometre Array to Herschel , 2010, 1002.1112.

[20]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[21]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[22]  C. Carilli,et al.  THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG , 2010, 1005.1641.

[23]  G. Zamorani,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .

[24]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[25]  Nick Kaiser,et al.  Weak gravitational lensing of distant galaxies , 1992 .

[26]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[27]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[28]  A. Koekemoer,et al.  Deep ATLAS Radio Observations of the Chandra Deep Field-South/Spitzer Wide-Area Infrared Extragalactic Field , 2006 .

[29]  R. Fisher,et al.  The Logic of Inductive Inference , 1935 .

[30]  Chris Blake,et al.  Measurement of the angular correlation function of radio galaxies from the NRAO VLA Sky Survey , 2002 .

[31]  H. J. A. Rottgering,et al.  The spatial clustering of radio sources in NVSS and FIRST; implications for galaxy clustering evolution , 2003 .

[32]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[33]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[34]  Michigan.,et al.  Estimating photometric redshifts with artificial neural networks , 2002, astro-ph/0203250.

[35]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[36]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.

[37]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[38]  Robert C. Nichol,et al.  Cosmological Measurements with Forthcoming Radio Continuum Surveys , 2011, 1108.0930.

[39]  C. Blake,et al.  Angular clustering in the Sydney University Molonglo Sky Survey , 2004 .

[40]  Paolo Ciliegi,et al.  Deep ATLAS radio observations of the CDFS-SWIRE field , 2006, astro-ph/0610538.

[41]  The angular power spectrum of NVSS radio galaxies , 2004, astro-ph/0404085.

[42]  Tadafumi Takata,et al.  Radio imaging of the Subaru/XMM-Newton Deep Field - I. The 100-μJy catalogue, optical identifications, and the nature of the faint radio source population , 2006, astro-ph/0609529.