CellexalVR: A virtual reality platform to visualise and analyse single-cell data

Single-cell RNAseq is a routinely used technique to explore the composition of cell populations, and they are often visualised using dimension reduction methods where the cells are represented in two or three dimensional space. Many tools are available to do this but visualising and cross-comparing these representations can be challenging, especially when cells are projected onto three dimensions which can be more informative for complex datasets. Here we present CellexalVR (www.cellexalvr.med.lu.se), a feature-rich, fully interactive virtual reality environment for the visualisation and analysis of single-cell experiments that allows researchers to intuitively and collaboratively gain an understanding of their data.

[1]  Li Wang,et al.  Dimensionality Reduction Via Graph Structure Learning , 2015, KDD.

[2]  S. Teichmann,et al.  Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.

[3]  Gary D. Bader,et al.  Single-cell transcriptomic profiling of the aging mouse brain , 2019, Nature Neuroscience.

[4]  Berthold Göttgens,et al.  A single-cell molecular map of mouse gastrulation and early organogenesis , 2019, Nature.

[5]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[6]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[7]  Ni Huang,et al.  Comparison of visualisation tools for single-cell RNAseq data , 2020, bioRxiv.

[8]  Hanchuan Peng,et al.  TeraVR Empowers Precise Reconstruction of Complete 3-D Neuronal Morphology in the Whole Brain , 2019 .

[9]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[10]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[11]  Nicola K. Wilson,et al.  A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. , 2016, Blood.

[12]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[13]  Donald Meagher,et al.  Geometric modeling using octree encoding , 1982, Comput. Graph. Image Process..

[14]  Michael T. Garcia,et al.  Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche , 2020, Proceedings of the National Academy of Sciences.

[15]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[16]  Jonathan S. Packer,et al.  A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution , 2019, Science.

[17]  Luca Pinello,et al.  singlecellVR: interactive visualization of single-cell data in virtual reality , 2020, bioRxiv.

[18]  Caleb Weinreb,et al.  SPRING: a kinetic interface for visualizing high dimensional single-cell expression data , 2017, bioRxiv.

[19]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[20]  Andrew Butler,et al.  Integrated analysis of single cell transcriptomic data across conditions, technologies, and species , 2017, bioRxiv.

[21]  David McDonald,et al.  Decoding human fetal liver haematopoiesis , 2019, Nature.

[22]  Yu Yao,et al.  starmap: Immersive visualisation of single cell data using smartphone-enabled virtual reality , 2018 .

[23]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[24]  E. Pierson,et al.  ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.