Representation of binary classification trees with binary features by quantum circuits

We propose a quantum representation of binary classification trees with binary features based on a probabilistic approach. By using the quantum computer as a processor for probability distributions, a probabilistic traversal of the decision tree can be realized via measurements of a quantum circuit. We describe how tree inductions and the prediction of class labels of query data can be integrated into this framework. An on-demand sampling method enables predictions with a constant number of classical memory slots, independent of the tree depth. We experimentally study our approach using both a quantum computing simulator and actual IBM quantum hardware. To our knowledge, this is the first realization of a decision tree classifier on a quantum device.

[1]  Maris Ozols,et al.  Quantum rejection sampling , 2011, ITCS '12.

[2]  V.V. Shende,et al.  Synthesis of quantum-logic circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  Marco Pistoia,et al.  A Domain-agnostic, Noise-resistant, Hardware-efficient Evolutionary Variational Quantum Eigensolver , 2019 .

[4]  Rafael Lahoz-Beltra,et al.  Quantum Genetic Algorithms for Computer Scientists , 2016, Comput..

[5]  Andreas Holzinger,et al.  Data Mining with Decision Trees: Theory and Applications , 2015, Online Inf. Rev..

[6]  W. Gong,et al.  Genetic algorithms with noisy fitness , 1996 .

[7]  Ji Liu,et al.  Relaxed Peephole Optimization: A Novel Compiler Optimization for Quantum Circuits , 2020, 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO).

[8]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[9]  Maria Schuld,et al.  Quantum ensembles of quantum classifiers , 2017, Scientific Reports.

[10]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[11]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[12]  Fred W. Glover,et al.  The unconstrained binary quadratic programming problem: a survey , 2014, Journal of Combinatorial Optimization.

[13]  R.SIVARAJ,et al.  A REVIEW OF SELECTION METHODS IN GENETIC ALGORITHM , 2011 .

[14]  Vijay Kumar,et al.  A review on genetic algorithm: past, present, and future , 2020, Multimedia tools and applications.

[15]  C. Bauckhage,et al.  Gradient-free quantum optimization on NISQ devices , 2020, ArXiv.

[16]  Abdullah Ash-Saki,et al.  Study of Decoherence in Quantum Computers: A Circuit-Design Perspective , 2019, ArXiv.

[17]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[18]  Gexiang Zhang,et al.  Quantum-inspired evolutionary algorithms: a survey and empirical study , 2011, J. Heuristics.

[19]  Michael de Oliveira,et al.  Quantum Bayesian decision-making , 2020, ArXiv.

[20]  Mikko Möttönen,et al.  Transformation of quantum states using uniformly controlled rotations , 2004, Quantum Inf. Comput..

[21]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[22]  Ryan LaRose,et al.  Overview and Comparison of Gate Level Quantum Software Platforms , 2018, Quantum.

[23]  Chin-Yao Chang,et al.  On Quantum Computing for Mixed-Integer Programming , 2020 .

[24]  Salman Beigi,et al.  Quantum Speedup Based on Classical Decision Trees , 2019, ArXiv.

[25]  Sotiris B. Kotsiantis,et al.  Decision trees: a recent overview , 2011, Artificial Intelligence Review.

[26]  Dimitris Bertsimas,et al.  Optimal classification trees , 2017, Machine Learning.

[27]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[28]  Saburo Muroga,et al.  Binary Decision Diagrams , 2000, The VLSI Handbook.

[29]  Issei Sato,et al.  A Quantum-Inspired Ensemble Method and Quantum-Inspired Forest Regressors , 2017, ACML.

[30]  Kamil Khadiev,et al.  The Quantum Version Of Classification Decision Tree Constructing Algorithm C5.0 , 2019, ArXiv.

[31]  Francesco Petruccione,et al.  A divide-and-conquer algorithm for quantum state preparation , 2020, Scientific Reports.

[32]  Pedro M. Domingos,et al.  Tree Induction for Probability-Based Ranking , 2003, Machine Learning.

[33]  K. Khadiev,et al.  The Quantum Version of Random Forest Model for Binary Classification Problem , 2021 .

[34]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[35]  Mohsen Shahhosseini,et al.  Improved Weighted Random Forest for Classification Problems , 2020, ArXiv.

[36]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[37]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[38]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[39]  Mario Szegedy,et al.  Quantum Decision Trees and Semidefinite Programming. , 2001 .

[40]  Johannes Kofler,et al.  Quantum Information and Randomness , 2010, European Review.

[41]  Serge Fehr,et al.  Sampling in a Quantum Population, and Applications , 2009, CRYPTO.

[42]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[43]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[44]  Songfeng Lu,et al.  Quantum decision tree classifier , 2014, Quantum Inf. Process..

[45]  D.A. Sofge Toward a Framework for Quantum Evolutionary Computation , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[46]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[47]  Cristian S. Calude,et al.  Experimental Evidence of Quantum Randomness Incomputability , 2010, ArXiv.

[48]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[49]  Elizabeth C. Behrman,et al.  Experimental evaluation of quantum Bayesian networks on IBM QX hardware , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[50]  Ehsan Zahedinejad,et al.  Combinatorial Optimization on Gate Model Quantum Computers: A Survey , 2017, ArXiv.

[51]  Yaoyun Shi Entropy lower bounds for quantum decision tree complexity , 2002, Inf. Process. Lett..

[52]  M. Yung,et al.  Low-depth quantum state preparation , 2021, Physical Review Research.

[53]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[54]  Miguel 'A. Carreira-Perpin'an,et al.  An Experimental Comparison of Old and New Decision Tree Algorithms , 2019, ArXiv.

[55]  Maciej Lewenstein,et al.  Randomness in quantum mechanics: philosophy, physics and technology , 2016, Reports on progress in physics. Physical Society.

[56]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[57]  Isaac L. Chuang,et al.  Quantum Inference on Bayesian Networks , 2014, ArXiv.

[58]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[59]  Massoud Pedram,et al.  Linear-Depth Quantum Circuits for n-qubit Toffoli gates with no Ancilla , 2013, ArXiv.

[60]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[61]  M. Cerezo,et al.  Effect of barren plateaus on gradient-free optimization , 2020, Quantum.

[62]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[63]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[64]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[65]  H. Moya-Cessa,et al.  Application of Perturbation Theory to a Master Equation , 2016 .

[66]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.