Robust visual multitask tracking via composite sparse model

Abstract. Recently, multitask learning was applied to visual tracking by learning sparse particle representations in a joint task, which led to the so-called multitask tracking algorithm (MTT). Although MTT shows impressive tracking performances by mining the interdependencies between particles, the individual feature of each particle is underestimated. The utilized L1,q norm regularization assumes all features are shared between all particles and results in nearly identical representation coefficients in nonsparse rows. We propose a composite sparse multitask tracking algorithm (CSMTT). We develop a composite sparse model to formulate the object appearance as a combination of the shared feature component, the individual feature component, and the outlier component. The composite sparsity is achieved via the L1,∞ and L1,1 norm minimization, and is optimized by the alternating direction method of multipliers, which provides a favorable reconstruction performance and an impressive computational efficiency. Moreover, a dynamical dictionary updating scheme is proposed to capture appearance changes. CSMTT is tested on real-world video sequences under various challenges, and experimental results show that the composite sparse model achieves noticeable lower reconstruction errors and higher computational speeds than traditional sparse models, and CSMTT has consistently better tracking performances against seven state-of-the-art trackers.

[1]  Massimiliano Pontil,et al.  Multi-Task Feature Learning , 2006, NIPS.

[2]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[3]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[4]  Allen Y. Yang,et al.  Fast L1-Minimization Algorithms For Robust Face Recognition , 2010 .

[5]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[6]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[7]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Ali Jalali,et al.  A Dirty Model for Multi-task Learning , 2010, NIPS.

[9]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[11]  Tong Zhang,et al.  A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data , 2005, J. Mach. Learn. Res..

[12]  Peng Liu,et al.  2D Articulated Pose Tracking Using Particle Filter with Partitioned Sampling and Model Constraints , 2010, J. Intell. Robotic Syst..

[13]  Aggelos K. Katsaggelos,et al.  Low-Complexity Tracking-Aware H.264 Video Compression for Transportation Surveillance , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[14]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[15]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[16]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Hao Su,et al.  Efficient Euclidean Projections onto the Intersection of Norm Balls , 2012, ICML.

[18]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[19]  J.V. Candy,et al.  Bootstrap Particle Filtering , 2007, IEEE Signal Processing Magazine.

[20]  Emilio Maggio,et al.  Video Tracking - Theory and Practice , 2011 .

[21]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[22]  TaeYong Kim,et al.  Realtime user interface using particle filter with integral histogram , 2010, 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE).

[23]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Stephen J. Maybank,et al.  Visual Surveillance for Moving Vehicles , 1998, International Journal of Computer Vision.

[25]  Zhongliang Jing,et al.  A dual-kernel-based tracking approach for visual target , 2012, Science China Information Sciences.

[26]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[27]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[28]  周鑫,et al.  Tracking-learning-detection (TLD)-based video object tracking method , 2012 .

[29]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[30]  Michael Harville,et al.  Fast, integrated person tracking and activity recognition with plan-view templates from a single stereo camera , 2004, CVPR 2004.

[31]  Allen Y. Yang,et al.  Fast L1-Minimization Algorithms For Robust Face Recognition , 2010, 1007.3753.

[32]  Xi Chen,et al.  Accelerated Gradient Method for Multi-task Sparse Learning Problem , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[33]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Ali Jalali,et al.  A Dirty Model for Multiple Sparse Regression , 2011, IEEE Transactions on Information Theory.

[35]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[36]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[37]  Yuefeng Ji,et al.  Robust and efficient visual tracking under illumination changes based on maximum color difference histogram and min-max-ratio metric , 2013, J. Electronic Imaging.

[38]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[39]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[42]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..