Digital Calibration of Elements Mismatch in Multirate Predictive SAR ADCs

This paper presents a multirate predictive successive approximation register (SAR) analog-to-digital converter (ADC). The main objective is to introduce digital frameworks for resolving the weaknesses of the previous predictive schemes in the context of the SAR ADC. The proposed SAR ADC compensates for the capacitive element mismatches, extends the input signal frequency using an adaptive digital predictive machine (ADPM), and relaxes the speed requirement through multirate implementation of the ADPM. As a consequence, the achievable sampling-rate can also be improved by optimizing the capacitors according to the thermal noise requirement. Behavioral simulation results, based on the Monte Carlo method, are provided for a 12-bit SAR ADC to verify the usefulness of the proposed approach. The simulation results indicate that the means of the spurious-free dynamic range (SFDR) and the signal-to-noise and distortion ratio (SNDR) are 82.3 and 69.1 dB, respectively.

[1]  Mohammad Yavari,et al.  Digital Blind Background Calibration of Imperfections in Time-Interleaved ADCs , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Masanori Furuta,et al.  A 10-bit, 40-MS/s, 1.21 mW Pipelined SAR ADC Using Single-Ended 1.5-bit/cycle Conversion Technique , 2011, IEEE Journal of Solid-State Circuits.

[3]  Hae-Seung Lee,et al.  A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC With Background Timing Skew Calibration , 2014, IEEE Journal of Solid-State Circuits.

[4]  Mohammad Yavari,et al.  Statistics-Based Digital Background Calibration of Residue Amplifier Nonlinearity in Pipelined ADCs , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Soon-Jyh Chang,et al.  A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS , 2010, 2010 Symposium on VLSI Circuits.

[6]  Boris Murmann,et al.  System embedded ADC calibration for OFDM receivers , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Borivoje Nikolic,et al.  A 2.8 GS/s 44.6 mW Time-Interleaved ADC Achieving 50.9 dB SNDR and 3 dB Effective Resolution Bandwidth of 1.5 GHz in 65 nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[8]  Ángel Rodríguez-Vázquez,et al.  Equalization-Based Digital Background Calibration Technique for Pipelined ADCs , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[9]  Rui Paulo Martins,et al.  Histogram-Based Ratio Mismatch Calibration for Bridge-DAC in 12-bit 120 MS/s SAR ADC , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[10]  Zeljko Ignjatovic,et al.  Predictive Successive Approximation ADC , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[11]  Kathleen Philips,et al.  A 46 $\mu \text{W}$ 13 b 6.4 MS/s SAR ADC With Background Mismatch and Offset Calibration , 2017, IEEE Journal of Solid-State Circuits.

[12]  Rui Paulo Martins,et al.  Uniform Quantization Theory-Based Linearity Calibration for Split Capacitive DAC in an SAR ADC , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[13]  Franco Maloberti,et al.  An 8-b 400-MS/s 2-b-Per-Cycle SAR ADC With Resistive DAC , 2012, IEEE Journal of Solid-State Circuits.

[14]  Behzad Razavi,et al.  Design Considerations for Interleaved ADCs , 2013, IEEE Journal of Solid-State Circuits.

[15]  Dong Wang,et al.  Background interstage gain calibration technique for pipelined ADCs , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Behzad Razavi,et al.  A Tale of Two ADCs: Pipelined Versus SAR , 2015, IEEE Solid-State Circuits Magazine.

[17]  Rui Paulo Martins,et al.  A 10-bit 500-MS/s Partial-Interleaving Pipelined SAR ADC With Offset and Reference Mismatch Calibrations , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  Atila Alvandpour,et al.  Power consumption bounds for SAR ADCs , 2011, 2011 20th European Conference on Circuit Theory and Design (ECCTD).

[19]  Boris Murmann The successive approximation register ADC: a versatile building block for ultra-low- power to ultra-high-speed applications , 2016, IEEE Communications Magazine.

[20]  Mohammad Yavari,et al.  Digital Calibration of DAC Unit Elements Mismatch in Pipelined ADCs , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Kathleen Philips,et al.  A 0.47–1.6 mW 5-bit 0.5–1 GS/s Time-Interleaved SAR ADC for Low-Power UWB Radios , 2012, IEEE Journal of Solid-State Circuits.

[22]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[23]  Yusuf Leblebici,et al.  22.1 A 90GS/s 8b 667mW 64× interleaved SAR ADC in 32nm digital SOI CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[24]  Franco Maloberti,et al.  Split-SAR ADCs: Improved Linearity With Power and Speed Optimization , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[25]  Nahid Mirzaie,et al.  An Optimal Design Methodology for Yield-Improved and Low-Power Pipelined ADC , 2018, IEEE Transactions on Semiconductor Manufacturing.

[26]  Hossein Shamsi,et al.  Three-Dimensional Pipeline ADC Utilizing TSV/ Design Optimization and Memristor Ratioed Logic , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[27]  Behzad Razavi,et al.  A 12-Bit 200-MHz CMOS ADC , 2009, IEEE Journal of Solid-State Circuits.

[28]  Chun-Cheng Liu,et al.  28.1 A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[29]  Tien-Yu Lo,et al.  An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[30]  P. P. Vaidyanathan,et al.  The Theory of Linear Prediction , 2008, Synthesis Lectures on Signal Processing.

[31]  Anthony Chan Carusone,et al.  A Time-Interleaved -DAC Architecture Clocked at the Nyquist Rate , 2008 .

[32]  Ho-Jin Park,et al.  An 8.6 ENOB 900MS/s time-interleaved 2b/cycle SAR ADC with a 1b/cycle reconfiguration for resolution enhancement , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[33]  Un-Ku Moon,et al.  Blind Calibration Algorithm for Nonlinearity Correction Based on Selective Sampling , 2014, IEEE Journal of Solid-State Circuits.

[34]  David A. Johns,et al.  Time-interleaved oversampling A/D converters: theory and practice , 1997 .

[35]  I. V. Volkov,et al.  High-speed, high-resolution analog-to-digital converter with prediction , 2011 .

[36]  Boris Murmann,et al.  General Analysis on the Impact of Phase-Skew in Time-Interleaved ADCs , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  Reza Mohammadi,et al.  A statistics-based digital background calibration technique for pipelined ADCs , 2015, Integr..

[38]  Eitake Ibaragi,et al.  A 14b 80 MS/s SAR ADC With 73.6 dB SNDR in 65 nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[39]  Nan Sun,et al.  Predicting ADC: A new approach for low power ADC design , 2014, 2014 IEEE Dallas Circuits and Systems Conference (DCAS).

[40]  An-Yeu Wu,et al.  A novel multirate adaptive FIR filtering algorithm and structure , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[41]  Yuan Zhou,et al.  A 12 bit 160 MS/s Two-Step SAR ADC With Background Bit-Weight Calibration Using a Time-Domain Proximity Detector , 2015, IEEE Journal of Solid-State Circuits.

[42]  Zheng Yang,et al.  Extrapolating analog-to-digital converter , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[43]  Jason Hu,et al.  An 11.5-ENOB 100-MS/s 8mW dual-reference SAR ADC in 28nm CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[44]  P. Harpe Successive Approximation Analog-to-Digital Converters: Improving Power Efficiency and Conversion Speed , 2016, IEEE Solid-State Circuits Magazine.