Some intriguing upper bounds for separating hash families

An N - n matrix on q symbols is called {w1,...,wt}-separating if for arbitrary t pairwise disjoint column sets C1,...,Ct with |Ci| = wi for 1 ≤ i ≤ t, there exists a row f such that f(C1),..., f(Ct) are also pairwise disjoint, where f(Ci) denotes the collection of components of Ci restricted to row f. Given integers N, q and w1,...,wt, denote by C(N, q, {w1,...,wt}) the maximal n such that a corresponding matrix does exist. The determination of C(N, q, {w1,...,wt}) has received remarkable attention during the recent years. The main purpose of this paper is to introduce two novel methodologies to attack the upper bound of C(N, q, {w1,...,wt}). The first one is a combination of the famous graph removal lemma in extremal graph theory and a Johnson-type recursive inequality in coding theory, and the second one is the probabilistic method. As a consequence, we obtain several intriguing upper bounds for some parameters of C(N, q, {w1,...,wt}), which significantly improve the previously known results.

[1]  David Conlon,et al.  Graph removal lemmas , 2012, Surveys in Combinatorics.

[2]  Douglas R. Stinson,et al.  Secure frameproof codes, key distribution patterns, group testing algorithms and related structures , 2000 .

[3]  Douglas R. Stinson,et al.  Some Improved Bounds for Secure Frameproof Codes and Related Separating Hash Families , 2008, IEEE Transactions on Information Theory.

[4]  Prof. Dr. Kurt Mehlhorn,et al.  Data Structures and Algorithms 1 , 1984, EATCS.

[5]  Douglas R Stinson,et al.  New constructions for perfect hash families and related structures using combinatorial designs and codes , 2000 .

[6]  Noga Alon,et al.  New Bounds on Parent-Identifying Codes: The Case of Multiple Parents , 2004, Combinatorics, Probability and Computing.

[7]  Gennian Ge,et al.  New Bounds on the Number of Tests for Disjunct Matrices , 2015, IEEE Transactions on Information Theory.

[8]  Tran van Trung,et al.  Bounds for separating hash families , 2011, J. Comb. Theory, Ser. A.

[9]  A. Nilli Perfect Hashing and Probability , 1994, Combinatorics, Probability and Computing.

[10]  Gennian Ge,et al.  New Bounds for Frameproof Codes , 2017, IEEE Transactions on Information Theory.

[11]  Kurt Mehlhorn Data Structures And Algorithms , 2011 .

[12]  Tran van Trung,et al.  Improved bounds for separating hash families , 2013, Des. Codes Cryptogr..

[13]  Simon R. Blackburn Frameproof Codes , 2003, SIAM J. Discret. Math..

[14]  Miklós Ruszinkó,et al.  On the Upper Bound of the Size of the R-Cover-Free Families , 1993, Proceedings. IEEE International Symposium on Information Theory.

[15]  Gennian Ge,et al.  Separating Hash Families: A Johnson-type bound and New Constructions , 2016, SIAM J. Discret. Math..

[16]  Xiaolei Niu,et al.  Some bounds of separating hash families , 2016, ArXiv.

[17]  Gennian Ge,et al.  New upper bounds for parent-identifying codes and traceability codes , 2018, Des. Codes Cryptogr..

[18]  Douglas R. Stinson,et al.  On generalized separating hash families , 2008, J. Comb. Theory, Ser. A.

[19]  Béla Bollobás,et al.  On separating systems , 2007, Eur. J. Comb..

[20]  Harrison Njoroge Data Structure and Algorithms , 2018 .

[21]  Simon R. Blackburn,et al.  Perfect Hash Families: Probabilistic Methods and Explicit Constructions , 2000, J. Comb. Theory, Ser. A.

[22]  Gérard D. Cohen,et al.  A hypergraph approach to the identifying parent property: the case of multiple parents , 2001, Electron. Notes Discret. Math..

[23]  Gennian Ge,et al.  Sparse hypergraphs: New bounds and constructions , 2017, J. Comb. Theory, Ser. B.

[24]  Jean-Paul M. G. Linnartz,et al.  On Codes with the Identifiable Parent Property , 1998, J. Comb. Theory, Ser. A.

[25]  Xiaolei Niu,et al.  Constructions and bounds for separating hash families , 2018, Discret. Math..

[26]  Arkadii G. D'yachkov,et al.  Cover-free codes and separating system codes , 2017, Des. Codes Cryptogr..

[27]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[28]  Douglas R. Stinson,et al.  A bound on the size of separating hash families , 2008, J. Comb. Theory, Ser. A.

[29]  P. Erdös,et al.  Families of finite sets in which no set is covered by the union ofr others , 1985 .

[30]  Noga Alon,et al.  Parent-Identifying Codes , 2001, J. Comb. Theory, Ser. A.

[31]  Noga Alon,et al.  Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions , 1994, Algorithmica.

[32]  Avi Wigderson,et al.  Lower Bounds on Formula Size of Boolean Functions Using Hypergraph Entropy , 1995, SIAM J. Discret. Math..

[33]  Ryoh Fuji-Hara Perfect hash families of strength three with three rows from varieties on finite projective geometries , 2015, Des. Codes Cryptogr..

[34]  Charles J. Colbourn,et al.  Perfect Hash Families: Constructions and Existence , 2007, J. Math. Cryptol..

[35]  Amos Fiat,et al.  Tracing Traitors , 1994, CRYPTO.

[36]  Douglas R. Stinson,et al.  On tight bounds for binary frameproof codes , 2015, Des. Codes Cryptogr..

[37]  János Körner,et al.  New Bounds for Perfect Hashing via Information Theory , 1988, Eur. J. Comb..