Robust visual scene categorization in context

Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

[1]  Cordelia Schmid,et al.  Vector Quantizing Feature Space with a Regular Lattice , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[2]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[3]  Cor J. Veenman,et al.  The influence of cross-validation on video classification performance , 2006, MM '06.

[4]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Cor J. Veenman,et al.  Comparing compact codebooks for visual categorization , 2010, Comput. Vis. Image Underst..

[6]  Marcel Worring,et al.  High-Performance Distributed Image and Video Content Analysis with Parallel-Horus , 2007 .

[7]  Marcel Worring,et al.  Systematic evaluation of logical story unit segmentation , 2002, IEEE Trans. Multim..

[8]  Bernt Schiele,et al.  Multiple Object Class Detection with a Generative Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  Jean-Marc Odobez,et al.  A Thousand Words in a Scene , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Jiri Matas,et al.  Improving Descriptors for Fast Tree Matching by Optimal Linear Projection , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[11]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[12]  Bernt Schiele,et al.  International Journal of Computer Vision manuscript No. (will be inserted by the editor) Semantic Modeling of Natural Scenes for Content-Based Image Retrieval , 2022 .

[13]  Thijs Westerveld,et al.  Multimedia Retrieval Using Multiple Examples , 2004, CIVR.

[14]  Timo Ojala,et al.  On the significance of cluster-temporal browsing for generic video retrieval: a statistical analysis , 2006, MM '06.

[15]  Takeo Kanade,et al.  elligent Access Video: formedia Project , 1996 .

[16]  Cor J. Veenman,et al.  Episode-Constrained Cross-Validation in Video Concept Retrieval , 2009, IEEE Transactions on Multimedia.

[17]  Antonio Torralba,et al.  Describing Visual Scenes Using Transformed Objects and Parts , 2008, International Journal of Computer Vision.

[18]  Antonio Torralba,et al.  Graphical Model For Recognizing Scenes and Objects. , 2003, NIPS 2003.

[19]  Arnold W. M. Smeulders,et al.  What is the spatial extent of an object? , 2009, CVPR.

[20]  Florent Perronnin,et al.  Universal and Adapted Vocabularies for Generic Visual Categorization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[22]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[23]  Luc Van Gool,et al.  Modeling scenes with local descriptors and latent aspects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[24]  Antonio Torralba,et al.  Contextual Priming for Object Detection , 2003, International Journal of Computer Vision.

[25]  Massimiliano Pontil,et al.  Support Vector Machines for 3D Object Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Jun Yang,et al.  Exploring temporal consistency for video analysis and retrieval , 2006, MIR '06.

[27]  Antonio Torralba,et al.  Describing Visual Scenes using Transformed Dirichlet Processes , 2005, NIPS.

[28]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[29]  Rong Jin,et al.  Discriminative Cluster Refinement: Improving Object Category Recognition Given Limited Training Data , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[31]  Nuno Vasconcelos,et al.  On the efficient evaluation of probabilistic similarity functions for image retrieval , 2004, IEEE Transactions on Information Theory.

[32]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[33]  Nuno Vasconcelos,et al.  A unifying view of image similarity , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[34]  Marcel Worring,et al.  Browsing for the National Dutch Video Archive , 2006 .

[35]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[36]  Thomas Serre,et al.  Object recognition with features inspired by visual cortex , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[37]  Frédéric Jurie,et al.  Randomized Clustering Forests for Image Classification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Anil K. Jain,et al.  On image classification: city vs. landscape , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[40]  Marcel Worring,et al.  The Semantic Pathfinder: Using an Authoring Metaphor for Generic Multimedia Indexing , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[42]  Arnold W. M. Smeulders,et al.  Invariant representation in image processing , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[43]  Sameer A. Nene,et al.  A simple algorithm for nearest neighbor search in high dimensions , 1997 .

[44]  Cor J. Veenman,et al.  Robust Scene Categorization by Learning Image Statistics in Context , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[45]  Vijay V. Raghavan,et al.  A critical investigation of recall and precision as measures of retrieval system performance , 1989, TOIS.

[46]  Dennis Koelma,et al.  User transparency: a fully sequential programming model for efficient data parallel image processing , 2004, Concurr. Pract. Exp..

[47]  A. Rényi On Measures of Entropy and Information , 1961 .

[48]  Cor J. Veenman,et al.  Kernel Codebooks for Scene Categorization , 2008, ECCV.

[49]  Alfred O. Hero,et al.  Image registration in high-dimensional feature space , 2005, IS&T/SPIE Electronic Imaging.

[50]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[51]  Thierry Pun,et al.  The Truth about Corel - Evaluation in Image Retrieval , 2002, CIVR.

[52]  Aleksandra Mojsilovic,et al.  Semantic-Friendly Indexing and Quering of Images Based on the Extraction of the Objective Semantic Cues , 2004, International Journal of Computer Vision.

[53]  Paul Over,et al.  High-level feature detection from video in TRECVid: a 5-year retrospective of achievements , 2009 .

[54]  Emine Yilmaz,et al.  Estimating average precision with incomplete and imperfect judgments , 2006, CIKM '06.

[55]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Milind R. Naphade,et al.  A probabilistic framework for semantic video indexing, filtering, and retrieval , 2001, IEEE Trans. Multim..

[57]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[58]  Joost van de Weijer,et al.  Edge and corner detection by photometric quasi-invariants , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[60]  Yanjun Qi,et al.  Supervised classification for video shot segmentation , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[61]  Eli Shechtman,et al.  Matching Local Self-Similarities across Images and Videos , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[63]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[65]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[66]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[67]  Gertjan J. Burghouts,et al.  Color invariant object recognition using entropic graphs , 2006, Int. J. Imaging Syst. Technol..

[68]  Jun Yang,et al.  Finding Person X: Correlating Names with Visual Appearances , 2004, CIVR.

[69]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[71]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[72]  Marcel Worring,et al.  A Learned Lexicon-Driven Paradigm for Interactive Video Retrieval , 2007, IEEE Transactions on Multimedia.

[73]  Thierry Pun,et al.  Performance evaluation in content-based image retrieval: overview and proposals , 2001, Pattern Recognit. Lett..

[74]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[75]  Bernt Schiele,et al.  Natural Scene Retrieval Based on a Semantic Modeling Step , 2004, CIVR.

[76]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[77]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).