Characterization of the sub-mesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of high-resolution MCS data

Part of the kinetic energy that maintains ocean circulation cascades down to small scales until it is dissipated through mixing. While most steps of this downward energy cascade are well understood, an observational gap exists at horizontal scales of 103-101 m that prevents characterizing a key step in the chain: the transition from anisotropic internal wave motions to isotropic turbulence. Here we show that this observational gap can be covered using high-resolution multichannel seismic (HR-MCS) data. Spectral analysis of acoustic reflectors imaged in the Alboran Sea thermocline shows that this transition is likely caused by shear instabilities. In particular, we show that the averaged horizontal wavenumber spectra of the reflectors vertical displacements display three subranges that reproduce theoretical spectral slopes of internal waves [λx > 100 m], Kelvin-Helmholtz-type shear instabilities [100 m > λx > 33 m], and turbulence [λx < 33 m], indicating that the whole chain of events is occurring continuously and simultaneously in the surveyed area.

[1]  W. Steven Holbrook,et al.  Thermohaline Fine Structure in an Oceanographic Front from Seismic Reflection Profiling , 2003, Science.

[2]  Chris Garrett,et al.  INTERNAL WAVES IN THE OCEAN , 1979 .

[3]  F. Bretherton,et al.  Resonant interaction of oceanic internal waves , 1977 .

[4]  Louis N. Howard,et al.  Note on a heterogeneous shear flow , 1964, Journal of Fluid Mechanics.

[5]  Dirk Klaeschen,et al.  Seismic reflection along the path of the Mediterranean Undercurrent , 2009 .

[6]  Juan José Dañobeitia,et al.  Relative contribution of temperature and salinity to ocean acoustic reflectivity , 2009 .

[7]  S. Mallick,et al.  2-D ocean temperature and salinity images from pre-stack seismic waveform inversion methods: an example from the South China Sea , 2015 .

[8]  W. Steven Holbrook,et al.  Ocean internal wave spectra inferred from seismic reflection transects , 2005 .

[9]  G. Krahmann,et al.  Estimating movement of reflectors in the water column using seismic oceanography , 2009 .

[10]  Jacques Nihoul,et al.  The Turbulent Ocean , 1980 .

[11]  Juan José Dañobeitia,et al.  Imaging meddy finestructure using multichannel seismic reflection data , 2008 .

[12]  N. White,et al.  Seismic Imaging of Rapid Onset of Stratified Turbulence in the South Atlantic Ocean , 2016 .

[13]  P Brandt,et al.  Mid‐depth internal wave energy off the Iberian Peninsula estimated from seismic reflection data , 2008 .

[14]  James J. Riley,et al.  Stratified Turbulence: A Possible Interpretation of Some Geophysical Turbulence Measurements , 2007 .

[15]  J. Gómez-Enri,et al.  Observations of internal waves and associated mixing phenomena in the Portimao Canyon area , 2006 .

[16]  S. A. Thorpe,et al.  Transitional phenomena and the development of turbulence in stratified fluids: A review , 1987 .

[17]  Á. Vázquez,et al.  Meteorologically forced subinertial flows and internal wave generation at the main sill of the Strait of Gibraltar , 2008 .

[18]  Nicholas J. White,et al.  Estimating mixing rates from seismic images of oceanic structure , 2009 .

[19]  H. Mitsudera,et al.  On the mechanism of shear flow instabilities , 1994, Journal of Fluid Mechanics.

[20]  R. Kubichek,et al.  Estimating oceanic turbulence dissipation from seismic images , 2013 .

[21]  L. Gostiaux,et al.  A deep‐ocean Kelvin‐Helmholtz billow train , 2010 .

[22]  J. Moum,et al.  Ocean Mixing by Kelvin-Helmholtz Instability , 2012 .

[23]  Dirk Klaeschen,et al.  Ocean temperature and salinity inverted from combined hydrographic and seismic data , 2010 .

[24]  S. Grossmann The Spectrum of Turbulence , 2003 .

[25]  R. Hobbs,et al.  Estimating internal wave spectra using constrained models of the dynamic ocean , 2009 .

[26]  J. Woods Wave-induced shear instability in the summer thermocline , 1968, Journal of Fluid Mechanics.

[27]  G. Batchelor Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity , 1959, Journal of Fluid Mechanics.

[28]  R. Hobbs,et al.  Seismic imaging of a large horizontal vortex at abyssal depths beneath the Sub-Antarctic Front , 2012 .

[29]  M. Gregg,et al.  Diapycnal mixing in the thermocline: A review , 1987 .

[30]  P. Orlandi,et al.  Buoyancy- to inertial-range transition in forced stratified turbulence , 2001, Journal of Fluid Mechanics.

[31]  C. Wunsch,et al.  Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks , 2009 .

[32]  B. Biescas,et al.  Direct temperature and salinity acoustic full waveform inversion , 2013 .

[33]  F. Klingelhoefer,et al.  Arms winding around a meddy seen in seismic reflection data close to the Morocco coastline , 2012 .

[34]  E. D’Asaro,et al.  Lagrangian Measurements of Waves and Turbulence in Stratified Flows , 2000 .

[35]  Jeffrey R. Koseff,et al.  The instability and breaking of long internal waves , 2005, Journal of Fluid Mechanics.

[36]  Michael L. Waite Stratified turbulence at the buoyancy scale , 2011 .

[37]  R. Street,et al.  The dynamics of breaking progressive interfacial waves , 2003, Journal of Fluid Mechanics.