A Synaptic Mechanism for Temporal Filtering of Visual Signals

Synaptic volume matters! The size of the presynaptic compartment of retinal bipolar cells controls the amplitude, speed, and adaptation of synaptic transmission.

[1]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[2]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[3]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[4]  F. Sala,et al.  Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. , 1990, Biophysical journal.

[5]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[6]  P. Mcnaughton,et al.  Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. , 1992, The Journal of physiology.

[7]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[8]  J. Dowling,et al.  Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Gary Matthews,et al.  Calcium dependence of the rate of exocytosis in a synaptic terminal , 1994, Nature.

[10]  W. Regehr,et al.  Calcium control of transmitter release at a cerebellar synapse , 1995, Neuron.

[11]  G. Matthews,et al.  Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons , 1996, Neuron.

[12]  E. A. Schwartz,et al.  Asynchronous transmitter release: control of exocytosis and endocytosis at the salamander rod synapse. , 1996, The Journal of physiology.

[13]  Leon Lagnado,et al.  Continuous Vesicle Cycling in the Synaptic Terminal of Retinal Bipolar Cells , 1996, Neuron.

[14]  R. Fettiplace,et al.  A theoretical study of calcium microdomains in turtle hair cells. , 1996, Biophysical journal.

[15]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[16]  L. Lagnado,et al.  Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the Goldfish retina , 1997, The Journal of physiology.

[17]  M. Tachibana,et al.  Submillisecond Kinetics of Glutamate Release from a Sensory Synapse , 1998, Neuron.

[18]  E. A. Schwartz,et al.  Continuous and Transient Vesicle Cycling at a Ribbon Synapse , 1998, The Journal of Neuroscience.

[19]  L. Lagnado,et al.  The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells , 1999, The Journal of physiology.

[20]  E. A. Schwartz,et al.  Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina , 1999, Nature.

[21]  C. Govind,et al.  Calcium Entry Related to Active Zones and Differences in Transmitter Release at Phasic and Tonic Synapses , 1999, The Journal of Neuroscience.

[22]  Nicolas Flores-Herr,et al.  Light Evokes Ca2+ Spikes in the Axon Terminal of a Retinal Bipolar Cell , 2000, Neuron.

[23]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[24]  L. Lagnado,et al.  Synaptic Depression and the Kinetics of Exocytosis in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[25]  F. Rieke Temporal Contrast Adaptation in Salamander Bipolar Cells , 2001, The Journal of Neuroscience.

[26]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[27]  F. Werblin,et al.  Parallel processing in the mammalian retina: lateral and vertical interactions across stacked representations. , 2001, Progress in brain research.

[28]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[29]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[30]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[31]  L. Lagnado,et al.  Endogenous Calcium Buffers Regulate Fast Exocytosis in the Synaptic Terminal of Retinal Bipolar Cells , 2002, Neuron.

[32]  M. P. Tjoa,et al.  Feature extraction for the analysis of colon status from the endoscopic images , 2003, Biomedical engineering online.

[33]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[34]  Court Hull,et al.  Synaptic Cleft Acidification and Modulation of Short-Term Depression by Exocytosed Protons in Retinal Bipolar Cells , 2003, The Journal of Neuroscience.

[35]  L. Lagnado,et al.  High Mobility of Vesicles Supports Continuous Exocytosis at a Ribbon Synapse , 2004, Current Biology.

[36]  K. Rábl,et al.  A Highly Ca2+-Sensitive Pool of Vesicles Contributes to Linearity at the Rod Photoreceptor Ribbon Synapse , 2004, Neuron.

[37]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[38]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[39]  R. Nelson,et al.  Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina , 2004, The Journal of comparative neurology.

[40]  J. L. Kenyon,et al.  An Excel-based model of Ca2+ diffusion and fura 2 measurements in a spherical cell. , 2004, American journal of physiology. Cell physiology.

[41]  L. Lagnado,et al.  Expansion of calcium microdomains regulates fast exocytosis at a ribbon synapse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[43]  W. Betz,et al.  Synaptic vesicle pools , 2005, Nature Reviews Neuroscience.

[44]  J. B. Demb,et al.  Presynaptic Mechanism for Slow Contrast Adaptation in Mammalian Retinal Ganglion Cells , 2006, Neuron.

[45]  Leon Lagnado,et al.  Clathrin-Mediated Endocytosis Is the Dominant Mechanism of Vesicle Retrieval at Hippocampal Synapses , 2006, Neuron.

[46]  Wei Li,et al.  Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor Synapse , 2006, Neuron.

[47]  Geng-Lin Li,et al.  Short-Term Depression at the Reciprocal Synapses between a Retinal Bipolar Cell Terminal and Amacrine Cells , 2007, The Journal of Neuroscience.

[48]  S. Baccus Timing and computation in inner retinal circuitry. , 2007, Annual review of physiology.

[49]  Tobias Breuninger,et al.  Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina , 2009, Pflügers Archiv - European Journal of Physiology.

[50]  Hartmut Schmidt,et al.  Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins , 2009, Journal of Computational Neuroscience.

[51]  Vijay Balasubramanian,et al.  Receptive fields and functional architecture in the retina , 2009, The Journal of physiology.

[52]  Leon Lagnado,et al.  A genetically-encoded reporter of synaptic activity in vivo , 2009, Nature Methods.

[53]  D. Zenisek,et al.  Evidence that exocytosis is driven by calcium entry through multiple calcium channels in goldfish retinal bipolar cells. , 2009, Journal of Neurophysiology.

[54]  Skyler L Jackman,et al.  Role of the synaptic ribbon in transmitting the cone light response , 2009, Nature Neuroscience.

[55]  P. Sterling,et al.  How the Optic Nerve Allocates Space, Energy Capacity, and Information , 2009, The Journal of Neuroscience.

[56]  J. Diamond,et al.  Retinal Parallel Processors: More than 100 Independent Microcircuits Operate within a Single Interneuron , 2010, Neuron.

[57]  T. Baden,et al.  Primary Afferent Depolarization and Frequency Processing in Auditory Afferents , 2010, The Journal of Neuroscience.

[58]  L. Lagnado,et al.  Computational processing of optical measurements of neuronal and synaptic activity in networks , 2010, Journal of Neuroscience Methods.

[59]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[60]  F. Esposti,et al.  Spikes in Retinal Bipolar Cells Phase-Lock to Visual Stimuli with Millisecond Precision , 2011, Current Biology.

[61]  Perspectives on: Information and coding in mammalian sensory physiology , 2011, The Journal of General Physiology.

[62]  WR Taylor,et al.  Trigger features and excitation in the retina , 2011, Current Opinion in Neurobiology.

[63]  F. Rieke,et al.  Nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2 , 2011, The Journal of general physiology.

[64]  Mark S. Cembrowski,et al.  A Synaptic Mechanism for Retinal Adaptation to Luminance and Contrast , 2011, The Journal of Neuroscience.

[65]  H. von Gersdorff,et al.  Light-Evoked Lateral GABAergic Inhibition at Single Bipolar Cell Synaptic Terminals Is Driven by Distinct Retinal Microcircuits , 2011, The Journal of Neuroscience.

[66]  S. Baccus,et al.  Coordinated dynamic encoding in the retina using opposing forms of plasticity , 2011, Nature Neuroscience.

[67]  F. Esposti,et al.  In vivo evidence that retinal bipolar cells generate spikes modulated by light , 2011, Nature Neuroscience.

[68]  Mean-Hwan Kim,et al.  Patch-clamp capacitance measurements and Ca²⁺ imaging at single nerve terminals in retinal slices. , 2012, Journal of visualized experiments : JoVE.

[69]  M. Meister,et al.  Divergence of visual channels in the inner retina , 2012, Nature Neuroscience.

[70]  Tim Gollisch,et al.  Closed-Loop Measurements of Iso-Response Stimuli Reveal Dynamic Nonlinear Stimulus Integration in the Retina , 2012, Neuron.

[71]  J. Dowling,et al.  Bipolar cell–photoreceptor connectivity in the zebrafish (Danio rerio) retina , 2012, The Journal of comparative neurology.

[72]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[73]  L. Lagnado,et al.  Encoding of Luminance and Contrast by Linear and Nonlinear Synapses in the Retina , 2012, Neuron.

[74]  S. Baccus,et al.  Linking the Computational Structure of Variance Adaptation to Biophysical Mechanisms , 2012, Neuron.

[75]  Shannon Saszik,et al.  A Mammalian Retinal Bipolar Cell Uses Both Graded Changes in Membrane Voltage and All-or-Nothing Na+ Spikes to Encode Light , 2012, The Journal of Neuroscience.

[76]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[77]  Mark Wickert Signals and Systems For Dummies , 2013 .

[78]  Jamey S. Kain,et al.  Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila , 2012, Nature.

[79]  L. Lagnado,et al.  Synaptic mechanisms of adaptation and sensitization in the retina , 2013, Nature Neuroscience.

[80]  Mean-Hwan Kim,et al.  Single Ca2+ channels and exocytosis at sensory synapses , 2013, The Journal of physiology.

[81]  Thomas Euler,et al.  Spikes and ribbon synapses in early vision , 2013, Trends in Neurosciences.

[82]  Thomas Euler,et al.  Retinal bipolar cells: elementary building blocks of vision , 2014, Nature Reviews Neuroscience.