Open Bisimulation, Revisited

Abstract In the context of the π-calculus, open bisimulation is prominent and popular due to its congruence properties and its easy implementability. Motivated by the attempt to generalise it to the spi-calculus, we offer a new, more refined definition and show in how far it coincides with the original one.

[1]  Dale Miller,et al.  A Congruence Format for Name-passing Calculi , 2006, SOS@ICALP.

[2]  Daniele Gorla,et al.  On Compositional Reasoning in the Spi-calculus , 2002, FoSSaCS.

[3]  Matthew Hennessy,et al.  Symbolic Bisimulations , 1995, Theor. Comput. Sci..

[4]  Julian Rathke,et al.  Typed behavioural equivalences for processes in the presence of subtyping , 2004, Math. Struct. Comput. Sci..

[5]  Uwe Nestmann,et al.  On bisimulations for the spi calculus , 2005, Math. Struct. Comput. Sci..

[6]  Hans Hüttel,et al.  Deciding Framed Bisimilarity , 2003, INFINITY.

[7]  Uwe Nestmann,et al.  A formal semantics for protocol narrations , 2005, Theor. Comput. Sci..

[8]  Martín Abadi,et al.  A Bisimulation Method for Cryptographic Protocols , 1998, Nord. J. Comput..

[9]  Uwe Nestmann,et al.  Symbolic Bisimulation in the Spi Calculus , 2004, CONCUR.

[10]  Yuxi Fu On quasi-open bisimulation , 2005, Theor. Comput. Sci..

[11]  Dale Miller,et al.  A Proof Search Specification of the pi-Calculus , 2005, FGUC.

[12]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[13]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[14]  Uwe Nestmann,et al.  Open bisimulation, revisited , 2007, Theor. Comput. Sci..

[15]  W. F. Osgood Introduction to the calculus , 1922 .

[16]  Nobuko Yoshida,et al.  On Reduction-Based Process Semantics , 1995, Theor. Comput. Sci..