Improving the acceptance rate of reversible jump MCMC proposals

[1]  Christopher Jennison,et al.  Statistical image analysis for a confocal microscopy two‐dimensional section of cartilage growth , 2004 .

[2]  O. Cappé,et al.  Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers , 2003 .

[3]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[4]  Christopher Jennison,et al.  Statistical Image Analysis for a Confocal Microscopy 2D Section of Cartilage Growth , 2003 .

[5]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[6]  F Alawadhi Statistical image analysis and confocal microscopy , 2001 .

[7]  M. Stephens Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods , 2000 .

[8]  S. P. Brooksy,et al.  Efficient construction of reversible jump MCMC proposal dis- tributions , 2000 .

[9]  Merrilee Hurn,et al.  Bayesian object identification , 1999 .

[10]  Håvard Rue,et al.  Block updating in constrained Markov chain Monte Carlo sampling , 1999 .

[11]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[12]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[13]  Radford M. Neal Sampling from multimodal distributions using tempered transitions , 1996, Stat. Comput..

[14]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[15]  A. Baddeley,et al.  Stochastic geometry models in high-level vision , 1993 .

[16]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[17]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .