φ-FEM: A Finite Element Method on Domains Defined by Level-Sets

We extend a fictitious domain-type finite element method, called φ-FEM and introduced in [7], to the case of Neumann boundary conditions. The method is based on a multiplication by the level-set function and does not require a boundary fitted mesh. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our approach does not need any non-standard numerical integration on cut mesh elements or on the actual boundary. We prove the optimal convergence of φ-FEM and the fact that the discrete problem is well conditioned inependently of the mesh cuts. The numerical experiments confirm the theoretical results.

[1]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[2]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[3]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[4]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[5]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[6]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[7]  A. Lozinski,et al.  $\phi$-FEM: A Finite Element Method on Domains Defined by Level-Sets , 2019 .

[8]  Peter Hansbo,et al.  Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .

[9]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[10]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[11]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[12]  Peter Hansbo,et al.  A cut finite element method with boundary value correction , 2015, Math. Comput..

[13]  Jean-François Remacle,et al.  Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .

[14]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[15]  Alexei Lozinski,et al.  CutFEM without cutting the mesh cells: A new way to impose Dirichlet and Neumann boundary conditions on unfitted meshes , 2019, Computer Methods in Applied Mechanics and Engineering.

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[18]  Alexei Lozinski,et al.  A new fictitious domain method: Optimal convergence without cut elements , 2016, 1901.03966.