Current understanding and future research directions at the onset of the next century of sintering science and technology

Sintering and accompanying microstructural evolution is inarguably the most important step in the processing of ceramics and hard metals. In this process, an ensemble of particles is converted into a coherent object of controlled density and microstructure at an elevated temperature (but below the melting point) due to the thermodynamic tendency of the particle system to decrease its total surface and interfacial energy. Building on a long development history as a major technological process, sintering remains among the most viable methods of fabricating novel ceramics, including high surface area structures, nanopowder-based systems, and tailored structural and functional materials. Developing new and perfecting existing sintering techniques is crucial to meet ever-growing demand for a broad range of technologically significant systems including, for example, fuel and solar cell components, electronic packages and elements for computers and wireless devices, ceramic and metal-based bioimplants, thermoelectric materials, materials for thermal management, and materials for extreme environments. In this study, the current state of the science and technology of sintering is presented. This study is, however, not a comprehensive review of this extremely broad field. Furthermore, it only focuses on the sintering of ceramics. The fundamentals of sintering, including the thermodynamics and kinetics for solid-state- and liquid-phase-sintered systems are described. This study summarizes that the sintering of amorphous ceramics (glasses) is well understood and there is excellent agreement between theory and experiments. For crystalline materials, attention is drawn to the effect of the grain boundary and interface structure on sintering and microstructural evolution, areas that are expected to be significant for future studies. Considerable emphasis is placed on the topics of current research, including the sintering of composites, multilayered systems, microstructure-based models, multiscale models, sintering under external stresses, and innovative and novel sintering approaches, such as field-assisted sintering. This study includes the status of these subfields, the outstanding challenges and opportunities, and the outlook of progress in sintering research. Throughout the manuscript, we highlight the important lessons learned from sintering fundamentals and their implementation in practice.

[1]  T. Basak,et al.  Susceptor-Assisted Enhanced Microwave Processing of Ceramics - A Review , 2017 .

[2]  E. Olevsky,et al.  Fully coupled electromagnetic-thermal-mechanical comparative simulation of direct vs hybrid microwave sintering of 3Y-ZrO2 , 2017, 2011.14008.

[3]  E. Olevsky,et al.  Inherent heating instability of direct microwave sintering process: Sample analysis for porous 3Y-ZrO 2 , 2017, 2011.12403.

[4]  E. Olevsky,et al.  Sintering Stress of Nonlinear Viscous Materials , 2016 .

[5]  Jing Guo,et al.  Cold Sintering Process: A Novel Technique for Low‐Temperature Ceramic Processing of Ferroelectrics , 2016 .

[6]  E. Olevsky,et al.  Flash (Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide , 2016, Scientific Reports.

[7]  Jing Guo,et al.  Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics. , 2016, Angewandte Chemie.

[8]  E. Olevsky,et al.  Evolution of anisotropy in hierarchical porous ceramics during sinter-forging , 2016 .

[9]  C. Randall,et al.  Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering. , 2016, ACS applied materials & interfaces.

[10]  C. Randall,et al.  Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process. , 2016, ACS nano.

[11]  K. Shinagawa,et al.  Sintering force behind the viscous sintering of two particles , 2016 .

[12]  Seok-Young Ko,et al.  Mixed control of boundary migration and the principle of microstructural evolution , 2016 .

[13]  Seok-Young Ko,et al.  Growth behavior of faceted Na1/2Bi1/2TiO3-BaTiO3 grains in single and two-step sintering , 2016 .

[14]  Christopher D. Haines,et al.  Spark plasma sintering novel tooling design: temperature uniformization during consolidation of silicon nitride powder , 2016 .

[15]  Zilin Yan,et al.  Sintered ceramics with controlled microstructures: numerical investigations with the Discrete Element Method , 2016 .

[16]  R. Bordia,et al.  Strength of hierarchically porous ceramics: Discrete simulations on X-ray nanotomography images , 2016 .

[17]  I. Chen,et al.  Onset Criterion for Flash Sintering , 2015 .

[18]  E. Olevsky,et al.  Densification of zirconium nitride by spark plasma sintering and high voltage electric discharge consolidation: A comparative analysis , 2015 .

[19]  E. Olevsky,et al.  Advancement of Tooling for Spark Plasma Sintering , 2015 .

[20]  Christopher D. Haines,et al.  Experimental Investigation of Electric Contact Resistance in Spark Plasma Sintering Tooling Setup , 2015 .

[21]  E. Olevsky,et al.  Contribution of Electric Current into Densification Kinetics During Spark Plasma Sintering of Conductive Powder , 2015 .

[22]  M. Hoffmann,et al.  Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a structural transition of grain boundaries , 2015 .

[23]  Ji-Hoon Park,et al.  Solid‐State Conversion of Single Crystals: The Principle and the State‐of‐the‐Art , 2015 .

[24]  Guha Manogharan,et al.  Making sense of 3-D printing: Creating a map of additive manufacturing products and services , 2014 .

[25]  Fei Peng,et al.  Normal and Abnormal Grain Growths in BaTiO3 Fibers , 2014 .

[26]  Peter Greil,et al.  Additive Manufacturing of Ceramic‐Based Materials , 2014 .

[27]  Suk‐Joong L. Kang,et al.  Repetitive grain growth behavior with increasing temperature and grain boundary roughening in a model nickel system , 2014 .

[28]  Y. Sakka,et al.  Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering , 2014 .

[29]  M. Ferraris,et al.  Joining of C/SiC composites by spark plasma sintering technique , 2014 .

[30]  E. Olevsky,et al.  Outside Mainstream Electronic Databases: Review of Studies Conducted in the USSR and Post-Soviet Countries on Electric Current-Assisted Consolidation of Powder Materials , 2013, Materials.

[31]  Christophe L. Martin,et al.  Effect of size and homogeneity of rigid inclusions on the sintering of composites , 2013 .

[32]  E. Olevsky,et al.  Sintering of Multilayered Porous Structures: Part II–Experiments and Model Applications , 2013 .

[33]  E. Olevsky,et al.  Sintering of Multilayered Porous Structures: Part I‐Constitutive Models , 2013 .

[34]  Suk‐Joong L. Kang,et al.  Interface Structure‐Dependent Grain Growth Behavior in Polycrystals , 2013 .

[35]  E. Olevsky,et al.  Ponderomotive effects during contact formation in microwave sintering , 2013 .

[36]  Christopher D. Haines,et al.  Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design , 2013, Materials.

[37]  Konrad Wissenbach,et al.  Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting , 2013 .

[38]  E. Olevsky,et al.  Microwave Sintering: Fundamentals and Modeling , 2013 .

[39]  I. Chen,et al.  In Situ Thermometry Measuring Temperature Flashes Exceeding 1,700°C in 8 mol% Y2O3‐Stablized Zirconia Under Constant‐Voltage Heating , 2013 .

[40]  E. Olevsky,et al.  Advances in Sintering Science and Technology II: Ceramic Transactions , 2012 .

[41]  Kaufui Wong,et al.  A Review of Additive Manufacturing , 2012 .

[42]  Jian Luo,et al.  Developing Interfacial Phase Diagrams for Applications in Activated Sintering and Beyond: Current Status and Future Directions , 2012 .

[43]  R. Raj Joule heating during flash-sintering , 2012 .

[44]  R. Bordia,et al.  Microstructural Evolution and Anisotropic Shrinkage in Constrained Sintering and Sinter Forging , 2012 .

[45]  E. Olevsky,et al.  Advances in Sintering Research , 2012 .

[46]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability , 2012 .

[47]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: I. Experimental Analysis of Scalability , 2012 .

[48]  E. Olevsky,et al.  Direct Multi‐Scale Modeling of Sintering , 2012 .

[49]  Zhenhua Wang,et al.  A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current , 2012 .

[50]  R. Bordia,et al.  Simulation of the toughness of partially sintered ceramics with realistic microstructures , 2012 .

[51]  E. Olevsky,et al.  The microwave ponderomotive effect on ceramic sintering , 2012 .

[52]  Christophe L. Martin,et al.  Simulation of the elastic properties of porous ceramics with realistic microstructure , 2012 .

[53]  Sung-Yoon Chung,et al.  Nonlinear driving force–velocity relationship for the migration of faceted boundaries , 2012 .

[54]  E. Olevsky,et al.  Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry , 2012, Journal of Materials Science.

[55]  R. Poprawe,et al.  Laser additive manufacturing of metallic components: materials, processes and mechanisms , 2012 .

[56]  Dong-Yeol Yang,et al.  Abnormal grain growth enhanced densification of liquid phase-sintered WC–Co in support of the pore filling theory , 2012, Journal of Materials Science.

[57]  M. Cologna,et al.  Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping , 2011 .

[58]  Erica L. Corral,et al.  Spark Plasma Joining of ZrB2–SiC Composites Using Zirconium–Boron Reactive Filler Layers , 2011 .

[59]  Ho-yong Lee,et al.  Effect of TiO2 addition on grain shape and grain coarsening behavior in 95Na1/2Bi1/2TiO3–5BaTiO3 , 2011 .

[60]  Michael J. Hoffmann,et al.  Electric Field‐Assisted Sintering and Hot Pressing of Semiconductive Zinc Oxide: A Comparative Study , 2011 .

[61]  O. Guillon,et al.  Effect of uniaxial load on the sintering behaviour of 45S5 Bioglass® powder compacts , 2011 .

[62]  Si-Young Choi,et al.  Effect of step free energy on delayed abnormal grain growth in a liquid phase-sintered BaTiO3 model system , 2011 .

[63]  Zhaoyao Zhou,et al.  A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material , 2011, Journal of Materials Science.

[64]  Martin P. Harmer,et al.  The Phase Behavior of Interfaces , 2011, Science.

[65]  Dong-Yeol Yang,et al.  Suppression of Abnormal Grain Growth in WC–Co via Two‐Step Liquid Phase Sintering , 2011 .

[66]  Jing Zhang,et al.  Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering , 2011 .

[67]  Suk‐Joong L. Kang,et al.  Boundary structural transition and grain growth behavior in BaTiO3 with Nd2O3 doping and oxygen partial pressure change , 2011 .

[68]  M. Cologna,et al.  Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications , 2011 .

[69]  M. Cologna,et al.  Flash‐Sintering of Cubic Yttria‐Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing , 2011 .

[70]  R. German Coarsening in Sintering: Grain Shape Distribution, Grain Size Distribution, and Grain Growth Kinetics in Solid-Pore Systems , 2010 .

[71]  M. Cologna,et al.  Flash Sintering of Nanograin Zirconia in <5 s at 850°C , 2010 .

[72]  E. Olevsky,et al.  Numerical Simulation of Spark Plasma Sintering , 2010 .

[73]  Yu Zhou,et al.  Fast bonding α-SiAlON ceramics by spark plasma sintering , 2010 .

[74]  Lai-fei Cheng,et al.  FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation , 2010 .

[75]  U. Anselmi-Tamburini,et al.  Temperature and stress fields evolution during spark plasma sintering processes , 2010 .

[76]  J. Garay Current-Activated, Pressure-Assisted Densification of Materials , 2010 .

[77]  A. Maksimenko Direct multiscale modeling of diffusion sintering of ceramic composites , 2010 .

[78]  M. Harmer,et al.  The Relative Energies of Normally and Abnormally Growing Grain Boundaries in Alumina Displaying Different Complexions , 2010 .

[79]  F. Wakai,et al.  Anisotropic viscosities and shrinkage rates in sintering of particles arranged in a simple orthorhombic structure , 2010 .

[80]  C. Martin,et al.  The Effect of a Substrate on the Microstructure of Particulate Films , 2010 .

[81]  D. Bouvard,et al.  Finite Element Modelling of Microwave Sintering , 2010 .

[82]  Martin P. Harmer,et al.  Interfacial Kinetic Engineering: How Far Have We Come Since Kingery's Inaugural Sosman Address? , 2010 .

[83]  M. Harmer,et al.  Grain boundary complexions in ceramics and metals: An overview , 2009 .

[84]  O. Guillon,et al.  Constrained Sintering of a Glass Ceramic Composite: II. Symmetric Laminate , 2009 .

[85]  Y. Sakka,et al.  Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008 , 2009, Science and technology of advanced materials.

[86]  Michael J. Hoffmann,et al.  Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina , 2009 .

[87]  Suk‐Joong L. Kang,et al.  Microstructural changes in (K0.5Na0.5)NbO3 ceramics sintered in various atmospheres , 2009 .

[88]  J. Deubener,et al.  Sintering of glass matrix composites with small rigid inclusions , 2009 .

[89]  F. Wakai,et al.  Anisotropic sintering stress for sintering of particles arranged in orthotropic symmetry , 2009 .

[90]  Y. Sakka,et al.  Pressure effects on temperature distribution during spark plasma sintering with graphite sample , 2009 .

[91]  Suk‐Joong L. Kang,et al.  Microstructural Evolution During Sintering with Control of the Interface Structure , 2009 .

[92]  Luis Olmos,et al.  Evolution of Defects During Sintering: Discrete Element Simulations , 2009 .

[93]  E. Olevsky,et al.  Advances in Sintering Science and Technology , 2009 .

[94]  Y. Sakka,et al.  Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder , 2009, Journal of Materials Science.

[95]  Suk‐Joong L. Kang,et al.  Coarsening of polyhedral grains in a liquid matrix , 2008 .

[96]  Jian Luo Liquid-like interface complexion: From activated sintering to grain boundary diagrams , 2008 .

[97]  Yongsu Park,et al.  Grain boundary segregation, solute drag and abnormal grain growth , 2008 .

[98]  B. McWilliams,et al.  Multi-phenomena simulation of electric field assisted sintering , 2008 .

[99]  P. García-Casillas,et al.  Simulation of the Stress-Assisted Densification Behavior of a Powder Compact: Effect of Constitutive Laws , 2008 .

[100]  L. Froyen,et al.  Analysis of Mechanisms of Spark-Plasma Sintering , 2008 .

[101]  Ph. Bertrand,et al.  Ceramic components manufacturing by selective laser sintering , 2007 .

[102]  L. Froyen,et al.  Consolidation enhancement in spark-plasma sintering: Impact of high heating rates , 2007 .

[103]  Seong Gyoon Kim,et al.  Large-scale three-dimensional simulation of Ostwald ripening , 2007 .

[104]  Xiaogang Wang,et al.  Fabrication of Net-Shape Functionally Graded Composites by Electrophoretic Deposition and Sintering: Modeling and Experimentation , 2007 .

[105]  M. Harmer,et al.  Diffusion Controlled Abnormal Grain Growth in Ceramics , 2007 .

[106]  G. Abbruzzese,et al.  Theory of Grain Growth in the Presence of Atoms Drag Effects , 2007 .

[107]  W. Craig Carter,et al.  Complexion: A new concept for kinetic engineering in materials science , 2007 .

[108]  O. Guillon,et al.  Stress-induced anisotropy of sintering alumina: Discrete element modelling and experiments , 2007 .

[109]  M. Rahaman Sintering of Ceramics , 2007 .

[110]  O. Guillon,et al.  Constrained Sintering of Alumina Thin Films: Comparison Between Experiment and Modeling , 2007 .

[111]  Javier E. Garay,et al.  Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress , 2007 .

[112]  O. Guillon,et al.  Anisotropic Microstructural Development During the Constrained Sintering of Dip‐Coated Alumina Thin Films , 2007 .

[113]  D. Moorehead,et al.  Carbonate binders by “cold sintering” of calcium carbonate , 2007 .

[114]  K. Vanmeensel,et al.  The influence of percolation during pulsed electric current sintering of ZrO2-TiN powder compacts with varying TiN content , 2007 .

[115]  L. Froyen,et al.  Constitutive modeling of spark-plasma sintering of conductive materials , 2006 .

[116]  S. Singhal Solid Oxide Fuel Cells: Status, Challenges and Opportunities , 2006 .

[117]  G. Messing,et al.  Sintering of Bimodally Distributed Alumina Powders , 2006 .

[118]  Luis Olmos,et al.  Discrete element modeling of metallic powder sintering , 2006 .

[119]  W. Jo,et al.  Effect of Interface Structure on the Microstructural Evolution of Ceramics , 2006 .

[120]  D. Bernard,et al.  Improvement in the accuracy of calculated interface morphologies within Monte Carlo simulations of sintering processes , 2006 .

[121]  R. F. Walker Mechanism of Material Transport During Sintering , 2006 .

[122]  Veena Tikare,et al.  Multi‐Scale Study of Sintering: A Review , 2006 .

[123]  Gary L. Messing,et al.  Constrained Sintering of Low-Temperature Co-Fired Ceramics , 2006 .

[124]  Si-Young Choi,et al.  Effect of oxygen partial pressure on grain boundary structure and grain growth behavior in BaTiO3 , 2006 .

[125]  J. G. Arguello,et al.  An Arrhenius-Type Viscosity Function to Model Sintering Using the Skorohod–Olevsky Viscous Sintering Model Within a Finite-Element Code , 2006 .

[126]  F. Wakai Modeling and Simulation of Elementary Processes in Ideal Sintering , 2006 .

[127]  E. Olevsky,et al.  Kinetics and stability in compressive and tensile loading of porous bodies , 2006 .

[128]  B. McWilliams,et al.  The modeling of electric-current-assisted sintering to produce bulk nanocrystalline tungsten , 2006 .

[129]  Liyu Li,et al.  Two‐Step Sintering of Ceramics with Constant Grain‐Size, II: BaTiO3 and Ni–Cu–Zn Ferrite , 2006 .

[130]  Young‐Wook Kim,et al.  Fabrication of dense bulk nano-Si3N4 ceramics without secondary crystalline phase , 2006 .

[131]  Z. A. Munir,et al.  The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .

[132]  P. Cummings,et al.  Molecular dynamics simulation of titanium dioxide nanoparticle sintering. , 2005, The journal of physical chemistry. B.

[133]  Suk‐Joong L. Kang,et al.  Growth behavior of rounded (Ti,W)C and faceted WC grains in a Co matrix during liquid phase sintering , 2005 .

[134]  K. Vanmeensel,et al.  Modelling of the temperature distribution during field assisted sintering , 2005 .

[135]  文男 内木場,et al.  Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, 著者 Yoshihiko Imanaka, 出版社 Springer Science+Business Media Inc./USA, 発行年 2005年, ISBN 0-387-23130-7, $129.00 , 2005 .

[136]  Suk‐Joong L. Kang,et al.  Enhanced Densification of Liquid‐Phase‐Sintered WC–Co by Use of Coarse WC Powder: Experimental Support for the Pore‐Filling Theory , 2005 .

[137]  V. Tikare,et al.  Modelling of anisotropic sintering in crystalline ceramics , 2005 .

[138]  Robert M. McMeeking,et al.  Deformation of Interparticle Necks by Diffusion-Controlled Creep , 2005 .

[139]  Jing-Song Pan,et al.  Modelling microstructural evolution of porous polycrystalline materials and a numerical study of anisotropic sintering , 2005 .

[140]  Zuhair A. Munir,et al.  Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions , 2005 .

[141]  Suk‐Joong L. Kang,et al.  Microstructure development during liquid-phase sintering , 2005 .

[142]  I. Bae,et al.  Abnormal Grain Growth of Alumina , 2005 .

[143]  J. Derby,et al.  Three‐Dimensional Finite‐Element Analysis of Viscous Sintering , 2005 .

[144]  L. C. Jonghe,et al.  Microstructure Refinement of Sintered Alumina by a Two‐Step Sintering Technique , 2005 .

[145]  G. Messing,et al.  Constrained Densification of Alumina/Zirconia Hybrid Laminates, II: Viscoelastic Stress Computation , 2005 .

[146]  G. Messing,et al.  Constrained Densification of Alumina/Zirconia Hybrid Laminates, I: Experimental Observations of Processing Defects , 2005 .

[147]  G. Messing,et al.  Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry , 2005 .

[148]  J. Jean,et al.  Effect of Densification Mismatch on Camber Development during Cofiring of Nickel‐Based Multilayer Ceramic Capacitors , 2005 .

[149]  Y. Chiang,et al.  Effect of Initial Microstructure on Final Intergranular Phase Distribution in Liquid‐Phase‐Sintered Ceramics , 2004 .

[150]  C. Park,et al.  Effects of SiO2, CaO2, and MgO Additions on the Grain Growth of Alumina , 2004 .

[151]  J. Rödel,et al.  Constrained Film Sintering of Nanocrystalline TiO2 , 2004 .

[152]  J. Jean,et al.  Stress development during constrained sintering of alumina/glass/alumina sandwich structure , 2004 .

[153]  Joosung Kim,et al.  Effect of Sintering Atmosphere on Grain Shape and Grain Growth in Liquid‐Phase‐Sintered Silicon Carbide , 2004 .

[154]  S. Bordère Original Monte Carlo Methodology Devoted to the Study of Sintering Processes , 2004 .

[155]  K. Niihara,et al.  Influence of Yttria–Alumina Content on Sintering Behavior and Microstructure of Silicon Nitride Ceramics , 2004 .

[156]  Yoshihiko Imanaka,et al.  Multilayered low temperature cofired ceramics (LTCC) technology , 2004 .

[157]  E. Olevsky,et al.  Numerical Simulation of Anisotropic Shrinkage in a 2D Compact of Elongated Particles , 2004 .

[158]  F. Wakai,et al.  Methods to calculate sintering stress of porous materials in equilibrium , 2004 .

[159]  Suk‐Joong L. Kang,et al.  Sintering kinetics at final stage sintering: model calculation and map construction , 2004 .

[160]  J. Groza,et al.  Temperature evolution during field activated sintering , 2004 .

[161]  Si-Young Choi,et al.  Sintering kinetics by structural transition at grain boundaries in barium titanate , 2004 .

[162]  E. Olevsky,et al.  Effective diffusion coefficients in solid-state sintering , 2004 .

[163]  Jing-Song Pan,et al.  Solid-state diffusion under a large driving force and the sintering of nanosized particles , 2004 .

[164]  J. Rödel,et al.  Laser-assisted high-resolution loading dilatometer and applications , 2004 .

[165]  Doh-Yeon Kim,et al.  Fabrication of Dense Nanostructured Silicon Carbide Ceramics through Two‐Step Sintering , 2003 .

[166]  J. Rödel,et al.  Experimental determination of sintering stresses and sintering viscosities , 2003 .

[167]  J. Rödel,et al.  Viscous Poisson’s coefficient determined by discontinuous hot forging , 2003 .

[168]  Didier Bouvard,et al.  A phenomenological constitutive model for the sintering of alumina powder , 2003 .

[169]  Gary L. Messing,et al.  Microwave Sintering of Alumina at 2.45 GHz , 2003 .

[170]  J. Rödel,et al.  Critical Evaluation of Hot Forging Experiments: Case Study in Alumina , 2003 .

[171]  M. Harmer,et al.  Effect of Rigid Inclusions on the Densification and Constitutive Parameters of Liquid-Phase-Sintered YBa2Cu3O6+x Powder Compacts , 2003 .

[172]  Rémy Glardon,et al.  Sintering of commercially pure titanium powder with a Nd:YAG laser source , 2003 .

[173]  Doh-Yeon Kim,et al.  Effect of Grain Shape on Abnormal Grain Growth in Liquid‐Phase‐Sintered Nb1−xTixC–Co Alloys , 2002 .

[174]  Sung-Yoon Chung,et al.  Effects of donor concentration and oxygen partial pressure on interface morphology and grain growth behavior in SrTiO3 , 2002 .

[175]  C. Park,et al.  Abnormal Grain Growth in Alumina with Anorthite Liquid and the Effect of MgO Addition , 2002 .

[176]  J. Tartaj,et al.  A Strategic Two‐Stage Low‐Temperature Thermal Processing Leading to Fully Dense and Fine‐Grained Doped‐ZnO Varistors , 2002 .

[177]  E. Olevsky,et al.  Modeling of Damage Development During Sintering of Ceramics , 2001 .

[178]  Suk‐Joong L. Kang,et al.  Evaluation of Densification Mechanisms of Liquid-Phase Sintering , 2001, International Journal of Materials Research.

[179]  D. Yoon,et al.  The dependence of normal and abnormal grain growth in silver on annealing temperature and atmosphere , 2001 .

[180]  E. Olevsky,et al.  Temperature effect on strength evolution under sintering , 2001 .

[181]  Doh-Yeon Kim,et al.  Shape Dependence of the Coarsening Behavior of Niobium Carbide Grains Dispersed in a Liquid Iron Matrix , 2000 .

[182]  Sung-Yoon Chung,et al.  Grain boundary faceting and abnormal grain growth in BaTiO3 , 2000 .

[183]  A. Nakano,et al.  Multimillion Atom Simulations of Nanostructured Materials on Parallel Computers Sintering and Consolidation, Fracture, and Oxidation , 2000 .

[184]  E. Olevsky,et al.  Effect of gravity on dimensional change during sintering—II. Shape distortion , 2000 .

[185]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[186]  Torsten Kraft,et al.  Finite Element Simulation of Die Pressing and Sintering , 1999 .

[187]  P. Dorémus,et al.  Constitutive behaviour of metal powder during hot forming.: Part II: Unified viscoplastic modelling , 1999 .

[188]  Y. Carmel,et al.  Simulation of microwave sintering of ceramic bodies with complex geometry , 1999, IEEE Conference Record - Abstracts. 1999 IEEE International Conference on Plasma Science. 26th IEEE International Conference (Cat. No.99CH36297).

[189]  Manfred Thumm,et al.  Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron , 1999 .

[190]  Y. Chiang,et al.  Origin of Solid‐State Activated Sintering in Bi2O3‐Doped ZnO , 1999 .

[191]  J. Chaix,et al.  Computer simulation of particle rearrangement in the presence of liquid , 1999 .

[192]  E. Olevsky,et al.  Modeling grain growth dependence on the liquid content in liquid-phase-sintered materials , 1998 .

[193]  N. Hwang Simulation of the effect of anisotropic grain boundary mobility and energy on abnormal grain growth , 1998 .

[194]  Dinesh K. Agrawal,et al.  MICROWAVE PROCESSING OF CERAMICS , 1998 .

[195]  P. C. Clapp,et al.  Nanoparticle sintering simulations , 1998 .

[196]  Eugene A. Olevsky,et al.  Theory of sintering: from discrete to continuum , 1998 .

[197]  Suk‐Joong L. Kang,et al.  Theoretical analysis of liquid-phase sintering: Pore filling theory , 1998 .

[198]  E. Olevsky,et al.  Shape distortion under isostatic pressing , 1997 .

[199]  I. Chen,et al.  Sintering of Fine Oxide Powders: II, Sintering Mechanisms , 1997 .

[200]  A. Mortensen Kinetics of densification by solution-reprecipitation , 1997 .

[201]  N. Hwang,et al.  Abnormal growth of faceted (WC) grains in a (Co) liquid matrix , 1996 .

[202]  H. Riedel,et al.  A model for liquid phase sintering , 1996 .

[203]  J. E. Burke Lucalox Alumina: The Ceramic That Revolutionized Outdoor Lighting , 1996 .

[204]  Rajiv K. Kalia,et al.  Early stages of sintering of silicon nitride nanoclusters: a molecular-dynamics study on parallel machines , 1996 .

[205]  E. Olevsky,et al.  HIPing conditions for processing of metal matrix composites using the continuum theory for sintering—I. Theoretical analysis , 1996 .

[206]  J. Schneibel,et al.  The sintering of two particles by surface and grain boundary diffusion -- A two-dimensional numerical study , 1995 .

[207]  G. Lu,et al.  Densification kinetics of glass films constrained on rigid substrates , 1995 .

[208]  Sang M Han,et al.  Grain Growth in Si_3 N_4-Based Materials , 1995 .

[209]  C. Reid Numerical simulation of free shrinkage using a continuum theory for sintering , 1994 .

[210]  J. Svoboda,et al.  Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—II. Diffusional densification and creep , 1994 .

[211]  H. Riedel,et al.  Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—I. computation of equilibrium surfaces , 1994 .

[212]  A. Jagota,et al.  Crack Growth and Damage in Constrained Sintering Films , 1993 .

[213]  G. Lu,et al.  Effect of Mismatched Sintering Kinetics on Camber in a Low‐Temperature Cofired Ceramic Package , 1993 .

[214]  C. Kim,et al.  Effect of Heating Rate on Pore Shrinkage in Yttria‐doped Zirconia , 1993 .

[215]  H. Riedel,et al.  A theoretical study of grain growth in porous solids during sintering , 1993 .

[216]  T. Shaw Model for the Effect of Powder Packing on the Driving Force for Liquid‐Phase Sintering , 1993 .

[217]  M. Shtern,et al.  Continuum theory of sintering. II. Effect of the rheological properties of the solid phase on the kinetics of sintering , 1993 .

[218]  J. Besson,et al.  Rheology of porous alumina and simulation of hot isostatic pressing , 1992 .

[219]  A. Cocks,et al.  Constitutive models for the sintering of ceramic components—I. Material models , 1992 .

[220]  J. D. Katz,et al.  Microwave Sintering of Ceramics , 1992 .

[221]  R. McMeeking,et al.  A diffusional creep law for powder compacts , 1992 .

[222]  R. McMeeking,et al.  Creep of Power-Law Material Containing Spherical Voids , 1991 .

[223]  L. C. Jonghe,et al.  Precoarsening to Improve Microstructure and Sintering of Powder Compacts , 1991 .

[224]  G. Messing,et al.  A theoretical analysis of solution-precipitation controlled densification during liquid phase sintering , 1991 .

[225]  G. Scherer Cell Models for Viscous Sintering , 1991 .

[226]  C. Greskovich,et al.  Transparent polycrystalline garnet , 1991 .

[227]  R. Tummala Ceramic and Glass‐Ceramic Packaging in the 1990s , 1991 .

[228]  Suk‐Joong L. Kang,et al.  Densification And Shrinkage During Liquid-Phase Sintering , 1991 .

[229]  J. Rödel,et al.  Pore drag and pore-boundary separation in alumina , 1990 .

[230]  I-Wei Chen,et al.  Computer Simulation of Final‐Stage Sintering: I, Model Kinetics, and Microstructure , 1990 .

[231]  A. Jagota,et al.  Isotropic Constitutive Model for Sintering Particle Packings , 1990 .

[232]  L. C. Jonghe,et al.  Sintering of Spherical Glass Powder under a Uniaxial Stress , 1990 .

[233]  G. Messing,et al.  Kinetic Analysis of Solution‐Precipitation During Liquid‐Phase Sintering of Alumina , 1990 .

[234]  R. Doremus,et al.  Microstructural Coarsening During Sintering of Boron Carbide. , 1989 .

[235]  R. M. Cannon,et al.  Interplay of Sintering Microstructures, Driving Forces, and Mass Transport Mechanisms , 1989 .

[236]  Suk‐Joong L. Kang,et al.  Microstructural change during liquid phase sintering of W−Ni−Fe alloy , 1989 .

[237]  L. C. Jonghe,et al.  Effect of temperature on the densification/creep viscosity during sintering , 1989 .

[238]  R. Raj,et al.  Shear and Densification of Glass Powder Compacts , 1989 .

[239]  Michael P. Anderson,et al.  Simulation and theory of abnormal grain growth: anisotropic grain boundary energies and mobilities , 1989 .

[240]  Jenn–Ming Wu,et al.  Sintering of hydroxylapatite-zirconia composite materials , 1988 .

[241]  G. Scherer,et al.  On constrained sintering-II. Comparison of constitutive models , 1988 .

[242]  G. Scherer,et al.  On constrained sintering-III. Rigid inclusions , 1988 .

[243]  Rajendra K. Bordia,et al.  On constrained sintering—I. Constitutive model for a sintering body , 1988 .

[244]  M. Harmer,et al.  Effect of Pore Distribution on Microstructure Development: II, First‐ and Second‐Generation Pores , 1988 .

[245]  R. Raj,et al.  Sintering of TiO2–Al2O3 Composites: A Model Experimental Investigation , 1988 .

[246]  J. Willis,et al.  On the overall properties of nonlinearly viscous composites , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[247]  M. Harmer,et al.  Effect of Pore Distribution on Microstructure Development: I, Matrix Pores , 1988 .

[248]  L. C. Jonghe,et al.  Effect of Rigid Inclusions on the Sintering of Glass Powder Compacts , 1987 .

[249]  George W. Scherera Sintering with Rigid Inclusions , 1987 .

[250]  R. Raj Analysis of the sintering pressure , 1987 .

[251]  Doh-Yeon Kim,et al.  Effect of Sintering Temperature on the Densification of Al2O3 , 1987 .

[252]  O. Kwon,et al.  The critical grain size for liquid flow into pores during liquid phase sintering , 1986 .

[253]  G. Scherer Viscous Sintering under a Uniaxial Load , 1986 .

[254]  D. W. Readey,et al.  Sintering of ZrO2 in HCl Atmospheres , 1986 .

[255]  R. Raj,et al.  Shear Deformation and Densification of Powder Compacts , 1986 .

[256]  R. M. Cannon,et al.  Viscoelastic stresses and sintering damage in heterogeneous powder compacts , 1986 .

[257]  R. Raj,et al.  Analysis of Sintering of a Composite with a Glass or Ceramic Matrix , 1986 .

[258]  N. Yamasaki,et al.  A hydrothermal hot-pressing method: Apparatus and application , 1986 .

[259]  M. Ashby,et al.  Hot isostatic pressing diagrams : new developments , 1985 .

[260]  E. Rabinovich Preparation of glass by sintering , 1985 .

[261]  L. C. Jonghe,et al.  Creep and Densification During Sintering of Glass Powder Compacts , 1985 .

[262]  C. Hsueh Sintering of a ceramic film on a rigid substrate , 1985 .

[263]  R. Raj,et al.  Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate , 1985 .

[264]  G. Scherer,et al.  Viscous Sintering on a Rigid Substrate , 1985 .

[265]  G. Scherer Viscous Sintering of a Bimodal Pore‐Size Distribution , 1984 .

[266]  J. Halloran,et al.  Influence of Aggregates on Sintering , 1984 .

[267]  T. Tseng,et al.  Preparation of SiO2 Glass from Model Powder Compacts: I, Formation and Characterization of Powders, Suspensions, and Green Compacts , 1984 .

[268]  R. Raj,et al.  Sintering behavior of bi-modal powder compacts , 1984 .

[269]  B. I. Davis,et al.  Processing‐Related Fracture Origins: III, Differential Sintering of ZrO2 Agglomerates in Al2O3/ZrO2 Composite , 1983 .

[270]  A. Evans,et al.  Experimental assessment of pore breakaway during sintering , 1983 .

[271]  F. F. Lange Processing‐Related Fracture Origins: I, Observations in Sintered and Isostatically Hot‐Pressed A12O3/ZrO2 Composites , 1983 .

[272]  A. Evans,et al.  Microstructure development during final/intermediate stage sintering—I. Pore/grain boundary separation , 1982 .

[273]  W. Rhodes CONTROLLED TRANSIENT SOLID SECOND-PHASE SINTERING OF YTTRIA , 1981 .

[274]  M. Yan Microstructural control in the processing of electronic ceramics , 1981 .

[275]  M. Ashby,et al.  A second report on sintering diagrams , 1981 .

[276]  G. Scherer Sintering inhomogeneous glasses: Application to optical waveguides , 1979 .

[277]  George W. Scherer,et al.  Sintering of Low‐Density Glasses: II, Experimental Study , 1977 .

[278]  George W. Scherer,et al.  Sintering of Low-Density Glasses: I, Theory , 1977 .

[279]  M. Ashby,et al.  Pressure sintering by power law creep , 1975 .

[280]  Michael F. Ashby,et al.  A first report on sintering diagrams , 1973 .

[281]  D. Johnson A General Model for the Intermediate Stage of Sintering , 1970 .

[282]  R. Coble Sintering Alumina: Effect of Atmospheres , 1962 .

[283]  R. L. Coble,et al.  Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models , 1961 .

[284]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[285]  R. Balluffi,et al.  The mechanism of sintering of copper , 1957 .

[286]  N. M. Parikh,et al.  Cermets: II, Wettability and Microstructure Studies in Liquid‐Phase Sintering , 1957 .

[287]  Conyers Herring,et al.  Effect of Change of Scale on Sintering Phenomena , 1950 .

[288]  J. Mackenzie,et al.  A Phenomenological Theory of Sintering , 1949 .

[289]  J. B. Ferguson NOTE ON THE SINTERING OF MAGNESIA , 1918 .

[290]  Chang-Hun Kim,et al.  고용량 MLCC 재료개발 동향 , 2016 .

[291]  Christophe L. Martin,et al.  Effective transport properties of 3D multi-component microstructures with interface resistance , 2015 .

[292]  W. Kaplan,et al.  The mechanism of grain boundary motion in SrTiO3 , 2015, Journal of Materials Science.

[293]  M. Harmer,et al.  Grain Boundary Complexions , 2014 .

[294]  O. Guillon,et al.  Effect of Electrical Field/Current on Sintering of Fully Stabilized Zirconia , 2012 .

[295]  Sung-Yoon Chung,et al.  Boundary faceting-dependent densification in a BaTiO3 model system , 2011 .

[296]  Michael J. Hoffmann,et al.  Electric Field‐Assisted Sintering in Comparison with the Hot Pressing of Yttria‐Stabilized Zirconia , 2011 .

[297]  Zhigang Zak Fang,et al.  Sintering of Advanced Materials , 2010 .

[298]  M. Harmer,et al.  Abnormal grain growth in undoped strontium and barium titanate , 2010 .

[299]  Christophe L. Martin,et al.  Sintering of thin films/constrained sintering , 2010 .

[300]  R. Bordia,et al.  The effect of a substrate on the sintering of constrained films , 2009 .

[301]  Hans Peter Buchkremer,et al.  Cofiring of Thin Zirconia Films During SOFC Manufacturing , 2009 .

[302]  L. Froyen,et al.  Impact of Thermal Diffusion on Densification During SPS , 2009 .

[303]  Adam J. Stevenson,et al.  Sintering and grain growth in SiO2 doped Nd:YAG , 2008 .

[304]  O. Guillon,et al.  Constrained sintering: A delicate balance of scales , 2008 .

[305]  S. Rocks,et al.  Integrating functional ceramics into microsystems , 2008 .

[306]  Jingzhe Pan,et al.  A further report on finite element analysis of sintering deformation using densification data—Error estimation and constrained sintering , 2008 .

[307]  O. Guillon,et al.  Uniaxial viscosity of gadolinium-doped ceria determined by discontinuous sinter forging , 2007 .

[308]  H. Riedel,et al.  Simulations of the influence of rearrangement during sintering , 2007 .

[309]  O. Guillon,et al.  Influence of thickness on the constrained sintering of alumina films , 2007 .

[310]  A. Domínguez-Rodríguez,et al.  Pore channel closure in sintering of a ring of three spheres , 2007 .

[311]  P. Šajgalík,et al.  Two‐Stage Sintering of Alumina with Submicrometer Grain Size , 2007 .

[312]  S. Hampshire Silicon nitride ceramics - review of structure, processing and properties , 2007 .

[313]  O. Guillon,et al.  Anisotropic constitutive laws for sintering bodies , 2006 .

[314]  H. Riedel,et al.  Simulation of Microwave Sintering with Advanced Sintering Models , 2006 .

[315]  Suk‐Joong L. Kang,et al.  Sintering: Densification, Grain Growth and Microstructure , 2005 .

[316]  Veena Tikare,et al.  Numerical simulation of solid state sintering , 2005 .

[317]  Torsten Kraft,et al.  Finite element simulation of cold isostatic pressing and sintering of SiC components , 2004 .

[318]  H. Riedel,et al.  Numerical simulation of solid state sintering; model and application , 2004 .

[319]  Suk‐Joong L. Kang,et al.  Dependence of Grain Growth and Grain-Boundary Structure on the Ba/Ti Ratio in BaTiO3 , 2004 .

[320]  E. Olevsky,et al.  Numerical Simulation of Solid‐State Sintering: I, Sintering of Three Particles , 2003 .

[321]  W. Kingery Role of Grain Boundaries in Sintering , 2003 .

[322]  S. Salamone Densification of and constitutive laws for ceramic matrix composites and multilayered systems , 2003 .

[323]  C. Randall,et al.  Prediction of shrinkage and deformation during LTCC device production , 2002 .

[324]  A. Cocks,et al.  Constitutive modelling of powder compaction and sintering , 2001 .

[325]  Amit Bandyopadhyay,et al.  Fused Deposition of Ceramics (FDC) and Composites , 2001 .

[326]  J. Groza Field activation provides improved sintering , 2000 .

[327]  Rustum Roy,et al.  Fabricating transparent ceramics by microwave sintering : Focus on Electronics , 2000 .

[328]  R. German Sintering theory and practice , 1996 .

[329]  K. Stern Metallurgical and ceramic protective coatings , 1996 .

[330]  R. Averback,et al.  Sintering of Nano-Particle Powders: Simulations and Experiments , 1996 .

[331]  T. Nishimura,et al.  Fabrication of silicon nitride nano-ceramics by spark plasma sintering , 1995 .

[332]  A. Boccaccini Sintering of glass matrix composites containing Al2O3 platelet inclusions , 1994, Journal of Materials Science.

[333]  M. Shtern,et al.  Continuum theory of sintering. I. Phenomenological model. Analysis of the effect of external forces on the kinetics of sintering , 1993 .

[334]  M. Harmer,et al.  Sintering kinetics for a model final-stage microstructure: A study of AI2O3 , 1991 .

[335]  W. Kingery,et al.  The Sintering of Crystalline Oxides, I. Interactions Between Grain Boundaries and Pores , 1990 .

[336]  K. Yoon,et al.  Densification of ceramics containing entrapped gases , 1989 .

[337]  R. Dehoff Stereological Theory of Sintering , 1989 .

[338]  R. Tummala Ceramics in Microelectronics Packaging: Past, Present and Future , 1989 .

[339]  P. Becher,et al.  Sintered Al2O3-SiC-whisker composites , 1987 .

[340]  T. Shaw Liquid Redistribution during Liquid‐Phase Sintering , 1986 .

[341]  R. German Liquid Phase Sintering , 1985 .

[342]  D. Johnson Ultra-Rapid Sintering , 1984 .

[343]  G. Petzow,et al.  Elimination of Pores During Liquid Phase Sintering of Mo—Ni , 1984 .

[344]  D. W. Readey,et al.  Vapor Transport and Sintering of Ceramics , 1984 .

[345]  G. Petzow,et al.  Liquid Phase Sintering of Ceramics , 1984 .

[346]  S. Sōmiya Hydrothermal Preparation and Sintering of Fine Ceramic Powders , 1983 .

[347]  D. Yoon,et al.  CLOSURE OF ISOLATED PORES IN LIQUID-PHASE SINTERING OF W-NI , 1981 .

[348]  R. M. Cannon,et al.  Initial Stage Solid State Sintering Models , 1980 .

[349]  H. Exner,et al.  A Critical Evaluation of Shrinkage Equations , 1980 .

[350]  R. M. Cannon,et al.  Current Paradigms in Powder Processing , 1978 .

[351]  Larry L. Hench,et al.  Ceramic Processing before Firing , 1978 .

[352]  W. Huppmann Sintering in the Presence of Liquid Phase , 1975 .

[353]  A. Ardell,et al.  The effect of volume fraction on particle coarsening: theoretical considerations , 1972 .

[354]  R. Brook Pore‐Grain Boundary Interactions and Grain Growth , 1969 .

[355]  C. Wagner Theory of Precipitate Change by Redissolution , 1961 .

[356]  J. Frenkel Viscous Flow of Crystalline Bodies under the Action of Surface Tension , 1945 .

[357]  S. Sundaresun Sintering with Rigid Inclusions : Pair Interactions , 2022 .