Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution performances of 2D MXenes

Surface terminated O-p orbital center εp, could be used as a good descriptor for HER of MXenes.

[1]  Yumin Zhang,et al.  Hierarchical Ni2P/Cr2CTx(MXene) composites with oxidized surface groups as efficient bifunctional electrocatalysts for overall water splitting , 2019, Journal of Materials Chemistry A.

[2]  Yumin Zhang,et al.  Transition metal modification and carbon vacancy promoted Cr2CO2 (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction , 2018 .

[3]  Xiaofeng Wang,et al.  g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution , 2018 .

[4]  Y. Gogotsi,et al.  Selective Etching of Silicon from Ti3 SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene). , 2018, Angewandte Chemie.

[5]  Hongda Du,et al.  Universal Descriptor for Large-Scale Screening of High-Performance MXene-Based Materials for Energy Storage and Conversion , 2018 .

[6]  Haotian Wang,et al.  High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification , 2018 .

[7]  K. Esfarjani,et al.  Insights into exfoliation possibility of MAX phases to MXenes. , 2018, Physical chemistry chemical physics : PCCP.

[8]  W. Liu,et al.  Edge-Riched MoSe2 /MoO2 Hybrid Electrocatalyst for Efficient Hydrogen Evolution Reaction. , 2018, Small.

[9]  Ning Zhang,et al.  Superior structural, elastic and electronic properties of 2D titanium nitride MXenes over carbide MXenes: a comprehensive first principles study , 2018, 2D Materials.

[10]  S. Joo,et al.  Correction: MXene: an emerging two-dimensional material for future energy conversion and storage applications , 2018 .

[11]  Yong Zhao,et al.  Theoretical exploration of the potential applications of Sc-based MXenes. , 2017, Physical chemistry chemical physics : PCCP.

[12]  Zhaojin Li,et al.  Chemical Origin of Termination-Functionalized MXenes: Ti3C2T2 as a Case Study , 2017 .

[13]  P. Ajayan,et al.  Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution , 2017, Nature Energy.

[14]  Zihe Zhang,et al.  Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction , 2017 .

[15]  K. Thygesen,et al.  Two-Dimensional MXenes as Catalysts for Electrochemical Hydrogen Evolution: A Computational Screening Study , 2017 .

[16]  Hui‐Ming Cheng,et al.  Phase transition and in situ construction of lateral heterostructure of 2D superconducting α/β Mo2C with sharp interface by electron beam irradiation. , 2017, Nanoscale.

[17]  Yury Gogotsi,et al.  High-Throughput Survey of Ordering Configurations in MXene Alloys Across Compositions and Temperatures. , 2017, ACS nano.

[18]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[19]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[20]  X. Tao,et al.  Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. , 2017, ACS nano.

[21]  A. Du,et al.  2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction , 2017 .

[22]  Jinlan Wang,et al.  Searching for Highly Active Catalysts for Hydrogen Evolution Reaction Based on O-Terminated MXenes through a Simple Descriptor , 2016 .

[23]  A. Vojvodić,et al.  Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution , 2016 .

[24]  Qing Tang,et al.  Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles , 2016 .

[25]  Jinlan Wang,et al.  Transition Metal‐Promoted V2CO2 (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction , 2016, Advanced science.

[26]  Charlie Tsai,et al.  Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends , 2015 .

[27]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[28]  Yao Zheng,et al.  Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. , 2015, Chemical Society reviews.

[29]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[30]  Charlie Tsai,et al.  Tuning the MoS₂ edge-site activity for hydrogen evolution via support interactions. , 2014, Nano letters.

[31]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[32]  Y. Sakka,et al.  The effect of the interlayer element on the exfoliation of layered Mo2AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets , 2014, Science and technology of advanced materials.

[33]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[34]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[35]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[36]  R. Balasubramaniam,et al.  Uncoupled non-linear equations method for determining kinetic parameters in case of hydrogen evolution reaction following Volmer–Heyrovsky–Tafel mechanism and Volmer–Heyrovsky mechanism , 2008 .

[37]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[38]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[39]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[45]  B. Conway,et al.  ac Impedance of Faradaic reactions involving electrosorbed intermediates—I. Kinetic theory , 1987 .

[46]  Y. Jiao,et al.  Holey Reduced Graphene Oxide Coupled with an Mo2N–Mo2C Heterojunction for Efficient Hydrogen Evolution , 2018, Advanced materials.