Paleogeographic Reconstruction of Precambrian Terranes Reworked by Phanerozoic Orogens: An Example Based on Detrital Zircon REE From Lhasa Terrane in Southern Tibet

Paleogeographic reconstruction of Precambrian terranes reworked by Phanerozoic orogens (e.g., the Tibetan Plateau) results in complex lithotectonic relations due to intracrustal reworking by tectonothermal events. Detrital zircon rare earth element (REE) databases at global (global major river sands) and regional (the Gangdese Mountains, southern Tibet) scales reveal trends in LREEN‾/HREEN‾ $\overline{{\mathrm{L}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}/\overline{{\mathrm{H}\mathrm{R}\mathrm{E}\mathrm{E}}_{\mathrm{N}}}$ and Eu/Eu* that effectively record the crustal evolution of the source, including crustal thickness and redox state of the magma that generated the zircons. Regional comparisons of these chemical markers provide a new approach for paleogeographic reconstructions that we apply to study the origin of the Lhasa terrane, southern Tibet. Using Precambrian to early Paleozoic sedimentary and igneous rocks in the Lhasa terrane and compiling detrital zircon analyses from the northern margin of Gondwana, we show that the Lhasa terrane had an African affinity in the Rodinia–Gondwana supercontinent cycles (ca. 1.4–0.4 Ga).

[1]  A. Triantafyllou,et al.  Europium anomalies in detrital zircons record major transitions in Earth geodynamics at 2.5 Ga and 0.9 Ga , 2022, Geology.

[2]  Peter A. Cawood,et al.  Secular Evolution of Continents and the Earth System , 2022, Reviews of Geophysics.

[3]  Peter A. Cawood,et al.  Interplay between oceanic subduction and continental collision in building continental crust , 2022, Nature Communications.

[4]  C. Langmuir,et al.  Oxidized primary arc magmas: Constraints from Cu/Zr systematics in global arc volcanics , 2022, Science advances.

[5]  J. Brocks,et al.  The temporal distribution of Earth's supermountains and their potential link to the rise of atmospheric oxygen and biological evolution , 2022, Earth and Planetary Science Letters.

[6]  Xuanhua Chen,et al.  Neoproterozoic and Early Paleozoic magmatism in the eastern Lhasa terrane: Implications for Andean-type orogeny along the northern margin of Rodinia and Gondwana , 2022, Precambrian Research.

[7]  Xin Dong,et al.  Precambrian metamorphic basement of the southern Lhasa terrane, Tibet , 2022, Precambrian Research.

[8]  Peter A. Cawood,et al.  Evaluating sediment recycling through combining inherited petrogenic and acquired sedimentary features of multiple detrital minerals , 2021, Basin Research.

[9]  E. al.,et al.  Supplemental Material: Crustal thickness of the Grenville orogen: A Mesoproterozoic Tibet? , 2021, Geology.

[10]  Peter A. Cawood,et al.  Gondwana's interlinked peripheral orogens , 2021, Earth and Planetary Science Letters.

[11]  Peter A. Cawood,et al.  Resolving the Paleogeographic Puzzle of the Lhasa Terrane in Southern Tibet , 2021, Geophysical Research Letters.

[12]  M. Kohn,et al.  Long-lived (ca. 22–24 Myr) partial melts in the eastern Himalaya: Petrochronologic constraints and tectonic implications , 2021 .

[13]  Peter A. Cawood,et al.  Middle Neoproterozoic (ca. 700 Ma) tectonothermal events in the Lhasa terrane, Tibet: Implications for paleogeography , 2021 .

[14]  J. Hao,et al.  Orogenic quiescence in Earth’s middle age , 2021, Science.

[15]  Peter A. Cawood,et al.  Cambrian magmatic flare-up, central Tibet: Magma mixing in proto-Tethyan arc along north Gondwanan margin , 2021, GSA Bulletin.

[16]  Xu-xuan Ma,et al.  How does the elevation changing response to crustal thickening process in the central Tibetan Plateau since 120 Ma? , 2021 .

[17]  Peter A. Cawood,et al.  Integrated detrital rutile and zircon provenance reveals multiple sources for Cambrian sandstones in North Gondwana , 2020 .

[18]  E. al.,et al.  The role of megacontinents in the supercontinent cycle , 2020, Geology.

[19]  C. Chen,et al.  Reconstructing crustal thickness evolution from europium anomalies in detrital zircons , 2020, Geology.

[20]  J. Chapman,et al.  Quantitatively Tracking the Elevation of the Tibetan Plateau Since the Cretaceous: Insights From Whole‐Rock Sr/Y and La/Yb Ratios , 2020, Geophysical Research Letters.

[21]  I. Campbell,et al.  S-type granites: Their origin and distribution through time as determined from detrital zircons , 2020 .

[22]  G. Gehrels,et al.  A zircon petrochronologic view on granitoids and continental evolution , 2020, Earth and Planetary Science Letters.

[23]  Xin Dong,et al.  Reworked Precambrian metamorphic basement of the Lhasa terrane, southern Tibet: Zircon/titanite U–Pb geochronology, Hf isotope and geochemistry , 2020, Precambrian Research.

[24]  Haoruo Wu,et al.  The North Lhasa terrane in Tibet was attached with the Gondwana before it was drafted away in Jurassic: Evidence from detrital zircon studies , 2019, Journal of Asian Earth Sciences.

[25]  Wangchun Xu,et al.  Origin and early evolution of the Lhasa Terrane, South Tibet: Constraints from the Bomi Gneiss Complex , 2019, Precambrian Research.

[26]  Haoruo Wu,et al.  Late Cryogenian magmatic activity in the North Lhasa terrane, Tibet: Implication of slab break-off process , 2019, Gondwana Research.

[27]  Peter A. Cawood,et al.  No collision between Eastern and Western Gondwana at their northern extent , 2019, Geology.

[28]  P. DeCelles,et al.  Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses , 2019, American Journal of Science.

[29]  D. Wyman,et al.  First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen , 2019, Geology.

[30]  H. Olierook,et al.  Tectonic controls on sediment provenance evolution in rift basins: Detrital zircon U–Pb and Hf isotope analysis from the Perth Basin, Western Australia , 2019, Gondwana Research.

[31]  W. Griffin,et al.  Neoproterozoic sedimentary rocks track the location of the Lhasa Block during the Rodinia breakup , 2019, Precambrian Research.

[32]  San-zhong Li,et al.  Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea , 2018, Earth-Science Reviews.

[33]  Haoruo Wu,et al.  Early Neoproterozoic (ca. 900 Ma) rift sedimentation and mafic magmatism in the North Lhasa Terrane, Tibet: Paleogeographic and tectonic implications , 2018, Lithos.

[34]  S. Reddy,et al.  Footprint of a large intracontinental rifting event: Coupled detrital zircon geochronology and geochemistry from the Mesoproterozoic Collier Basin, Western Australia , 2018, Precambrian Research.

[35]  Haoruo Wu,et al.  Middle Neoproterozoic (ca. 760 Ma) arc and back-arc system in the North Lhasa terrane, Tibet, inferred from coeval N-MORB- and arc-type gabbros , 2018, Precambrian Research.

[36]  Hongxia Yu,et al.  Petrogenesis and geodynamic significance of Neoproterozoic (∼925 Ma) high-Fe–Ti gabbros of the RenTso ophiolite, Lhasa Terrane, central Tibet , 2018, Precambrian Research.

[37]  Qing-guo Zhai,et al.  Precambrian origin of the North Lhasa terrane, Tibetan Plateau: Constraint from early Cryogenian back-arc magmatism , 2018, Precambrian Research.

[38]  W. Collins,et al.  Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet , 2018, Earth-Science Reviews.

[39]  Cin-Ty A. Lee,et al.  The redox “filter” beneath magmatic orogens and the formation of continental crust , 2018, Science Advances.

[40]  Qing-guo Zhai,et al.  Ediacaran magmatism in the North Lhasa terrane, Tibet and its tectonic implications , 2018 .

[41]  D. Stockli,et al.  Continental growth histories revealed by detrital zircon trace elements: A case study from India , 2018 .

[42]  Jianlin Chen,et al.  Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe–Yunzhug–Namu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau , 2018 .

[43]  C. Lana,et al.  Precambrian-Cambrian provenance of Matinde Formation, Karoo Supergroup, northwestern Mozambique, constrained from detrital zircon U-Pb age and Lu-Hf isotope data , 2018 .

[44]  Guangming Li,et al.  Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with Greater India , 2018 .

[45]  R. Müller,et al.  A full-plate global reconstruction of the Neoproterozoic , 2017 .

[46]  J. Chapman,et al.  Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application , 2017, Scientific Reports.

[47]  A. Berry,et al.  Formation of Hadean granites by melting of igneous crust , 2017 .

[48]  Peter A. Cawood,et al.  Raising the Gangdese Mountains in southern Tibet , 2017 .

[49]  N. Harris,et al.  Detrital zircon U–Pb geochronology, trace-element and Hf isotope geochemistry of the metasedimentary rocks in the Eastern Himalayan syntaxis: Tectonic and paleogeographic implications , 2017 .

[50]  R. Palin,et al.  Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling , 2016 .

[51]  R. Armstrong,et al.  New constraints on the origin and evolution of the Thomson Orogen and links with central Australia from isotopic studies of detrital zircons , 2016 .

[52]  G. Gehrels,et al.  A new method for estimating parent rock trace element concentrations from zircon , 2016, Chemical Geology.

[53]  Peter A. Cawood,et al.  Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles , 2016 .

[54]  R. Hocking,et al.  The answers are blowin’ in the wind: Ultra-distal ashfall zircons, indicators of Cretaceous super-eruptions in eastern Gondwana , 2016 .

[55]  Qing-guo Zhai,et al.  Early Neoproterozoic meta-gabbro (~925 Ma) from the Lhasa terrane, Tibetan Plateau and its geological significance , 2016 .

[56]  E. Garzanti,et al.  The timing of India-Asia collision onset – Facts, theories, controversies , 2016 .

[57]  S. Holford,et al.  Tracking the Cretaceous transcontinental Ceduna River through Australia: The hafnium isotope record of detrital zircons from offshore southern Australia , 2016 .

[58]  P. DeCelles,et al.  Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera , 2015 .

[59]  Peter A. Cawood,et al.  Magmatic record of India-Asia collision , 2015, Scientific Reports.

[60]  D. Avigad,et al.  The detrital zircon U–Pb–Hf fingerprint of the northern Arabian–Nubian Shield as reflected by a Late Ediacaran arkosic wedge (Zenifim Formation; subsurface Israel) , 2015 .

[61]  A. Kent,et al.  ZIRCON COMPOSITIONAL EVIDENCE FOR SULFUR-DEGASSING FROM ORE-FORMING ARC MAGMAS , 2015 .

[62]  H. O’Neill The Smoothness and Shapes of Chondrite-normalized Rare Earth Element Patterns in Basalts , 2014 .

[63]  G. Kamenov,et al.  A detrital zircon U-Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography , 2014 .

[64]  K. Yi,et al.  Gondwana margin evolution from zircon REE, O and Hf signatures of Western Province gneisses, Zealandia , 2014 .

[65]  Peter A. Cawood,et al.  Earth’s middle age , 2014 .

[66]  J. Dai,et al.  Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone , 2014 .

[67]  M. Santosh,et al.  The supercontinent cycle: A retrospective essay , 2014 .

[68]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[69]  Ming Wang,et al.  Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin , 2013 .

[70]  N. Planavsky,et al.  New age constraints for the Proterozoic Aravalli-Delhi successions of India and their implications , 2013 .

[71]  Xiao Lu,et al.  Precambrian evolution of the Lhasa terrane, Tibet: Constraint from the zircon U-Pb geochronology of the gneisses , 2013 .

[72]  N. Harris,et al.  Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet: Implications for the early evolution of Lhasa terrane , 2013 .

[73]  Peter A. Cawood,et al.  Not all supercontinents are created equal: Gondwana-Rodinia case study , 2013 .

[74]  T. Iizuka,et al.  Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers , 2013 .

[75]  D. Avigad,et al.  New insights into peri-Gondwana paleogeography and the Gondwana super-fan system from detrital zircon U-Pb ages , 2013 .

[76]  Q. Qian,et al.  Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation , 2013, Contributions to Mineralogy and Petrology.

[77]  S. Chakraborty,et al.  Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology , 2013, Contributions to Mineralogy and Petrology.

[78]  D. Wyman,et al.  Crustal Melting and Flow beneath Northern Tibet: Evidence from Mid-Miocene to Quaternary Strongly Peraluminous Rhyolites in the Southern Kunlun Range , 2012 .

[79]  Hong-lin Yuan,et al.  Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin , 2012 .

[80]  F. Liu,et al.  The making of Gondwana: Discovery of 650 Ma HP granulites from the North Lhasa, Tibet , 2012 .

[81]  Y. Eyal,et al.  The Sa'al volcano-sedimentary complex (Sinai, Egypt): A latest Mesoproterozoic volcanic arc in the northern Arabian Nubian Shield , 2012 .

[82]  D. Avigad,et al.  Coupled U–Pb–Hf of detrital zircons of Cambrian sandstones from Morocco and Sardinia: Implications for provenance and Precambrian crustal evolution of North Africa , 2012 .

[83]  S. Xiao,et al.  Correlation of Precambrian–Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones , 2011 .

[84]  Feng Liu,et al.  Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications , 2011 .

[85]  A. Morton,et al.  Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya , 2011 .

[86]  Y. Dilek,et al.  Lhasa terrane in southern Tibet came from Australia , 2011 .

[87]  G. Gehrels,et al.  Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone , 2011 .

[88]  W. Collins,et al.  Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data , 2011 .

[89]  Dunyi Liu,et al.  Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions , 2011 .

[90]  I. Campbell,et al.  The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event , 2010 .

[91]  Changyong Zhou,et al.  Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications , 2010 .

[92]  T. Hirata,et al.  Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth , 2010 .

[93]  R. Thomas,et al.  The Mecubúri and Alto Benfica Groups, NE Mozambique: Aids to unravelling ca. 1 and 0.5Ga events in the East African Orogen , 2010 .

[94]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[95]  F. Liu,et al.  Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: Petrology and zircon U-Pb geochronology , 2009 .

[96]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[97]  A. Leier,et al.  Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet , 2007 .

[98]  Z. Tian,et al.  Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. , 2007 .

[99]  Yue-heng Yang,et al.  Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology , 2006 .

[100]  W. Griffin,et al.  Trace element and isotopic composition of GJ-red zircon standard by laser ablation , 2006 .

[101]  M. Hirschmann Water, Melting, and the Deep Earth H 2 O Cycle , 2006 .

[102]  D. Avigad,et al.  Provenance of north Gondwana Cambrian–Ordovician sandstone: U–Pb SHRIMP dating of detrital zircons from Israel and Jordan , 2006, Geological Magazine.

[103]  W. Griffin,et al.  U–Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton , 2005 .

[104]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[105]  M. Ren Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma , 2004 .

[106]  I. Franchi,et al.  Further Characterisation of the 91500 Zircon Crystal , 2004 .

[107]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[108]  C. German,et al.  Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections , 2002 .

[109]  W. Griffin,et al.  Igneous zircon: trace element composition as an indicator of source rock type , 2002 .

[110]  Peter A. Cawood,et al.  Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia , 2000 .