Circular coloring of graphs via linear programming and tabu search

Circular coloring is a popular branch of graph theory which has been exhaustively studied for two decades mainly from a theoretical perspective. Since it is a refinement of the traditional proper coloring, it provides a more accurate model for cyclic scheduling problems which often arise in industrial applications. The present paper briefly surveys a special class of open shop scheduling that can be solved via circular coloring, and then proposes a new mathematical programming model and tabu search algorithm to compute the circular chromatic number of a graph effectively.

[1]  Ulrik Brandes,et al.  GraphML Progress Report , 2001, GD.

[2]  Xuding Zhu Star chromatic numbers and products of graphs , 1992, J. Graph Theory.

[3]  Gerhard J. Woeginger,et al.  Graph colorings , 2005, Theor. Comput. Sci..

[4]  P. Pardalos,et al.  The Graph Coloring Problem: A Bibliographic Survey , 1998 .

[5]  X. ZhuJuly Circular Coloring of Weighted Graphs , 1994 .

[6]  Hamed Hatami,et al.  On the complexity of the circular chromatic number , 2004, J. Graph Theory.

[7]  Xuding Zhu,et al.  Recent Developments in Circular Colouring of Graphs , 2006 .

[8]  Mohammad Ghebleh,et al.  Theorems and computations in circular colourings of graphs , 2007 .

[9]  Hong-Gwa Yeh,et al.  Resource-sharing system scheduling and circular chromatic number , 2005, Theor. Comput. Sci..

[10]  Zsolt Tuza,et al.  Rado's selection principle: applications to binary relations, graph and hypergraph colorings and partially ordered sets , 1992, Discret. Math..

[11]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[12]  T. C. Edwin Cheng,et al.  Complexity of cyclic scheduling problems: A state-of-the-art survey , 2010, Comput. Ind. Eng..

[13]  Hartmut Stadtler,et al.  Supply chain management and advanced planning--basics, overview and challenges , 2005, Eur. J. Oper. Res..

[14]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[15]  Dániel Marx,et al.  RAPH COLORING PROBLEMS AND THEIR APPLICATIONS IN SCHEDULING , 2022 .

[16]  Michael Pinedo,et al.  Planning and Scheduling in Manufacturing and Services , 2008 .

[17]  M Modares,et al.  APPLYING CIRCULAR COLORING TO OPEN SHOP SCHEDULING , 2008 .

[18]  James Demmel,et al.  the Parallel Computing Landscape , 2022 .

[19]  Xuding Zhu,et al.  Circular chromatic number: a survey , 2001, Discret. Math..

[20]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[21]  Andreas T. Ernst,et al.  Staff scheduling and rostering: A review of applications, methods and models , 2004, Eur. J. Oper. Res..

[22]  U. Brandes,et al.  GraphML Progress Report ? Structural Layer Proposal , 2001 .

[23]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[24]  Marcus Randall,et al.  A General Parallel Tabu Search Algorithm for Combinatorial Optimisation Problems , 1999 .

[25]  I. Maros Computational Techniques of the Simplex Method , 2002 .

[26]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[27]  Xuding Zhu,et al.  Circular colorings of weighted graphs , 1996 .

[28]  A. Vince,et al.  Star chromatic number , 1988, J. Graph Theory.

[29]  David R. Guichard,et al.  Acyclic graph coloring and the complexity of the star chromatic number , 1993, J. Graph Theory.