A real-time object tracking via L2-RLS and compressed Haar-like features matching

In this paper, we present a robust and fast online object tracking algorithm, in which object tracking is achieved by combining L2-regularized least square (L2-RLS) and compressed Haar-like features matching in a Bayesian inference framework. Firstly, the extent of occlusion can be evaluated by L2 tracker. Secondly, the compressed features matching method is used to locate the target object if the extent of occlusion satisfies two inequality constraints. Finally, most of the insignificant samples are removed before computing the compressed features, which makes the computational load of our fused algorithm be only slightly higher than L2 tracker. Both qualitative and quantitative evaluations on numerous challenging image sequences demonstrate that the proposed method is more robust and stable than L2 tracker when the target object undergoes pose variation or rotation, and a paired T-test verifies that it significantly outperforms other state-of-the-art algorithms in terms of accuracy. In addition, our tracker meets the requirement of real-time tracking.

[1]  Ming-Hsuan Yang,et al.  Least Soft-thresold Squares Tracking , 2013 .

[2]  Anders P. Eriksson,et al.  Is face recognition really a Compressive Sensing problem? , 2011, CVPR 2011.

[3]  Huchuan Lu,et al.  Object Tracking via 2DPCA and $\ell_{1}$-Regularization , 2012, IEEE Signal Processing Letters.

[4]  Subramanian Ramanathan,et al.  A Multi-Task Learning Framework for Head Pose Estimation under Target Motion , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[6]  Tat-Seng Chua,et al.  Exploring large scale data for multimedia QA: an initial study , 2010, CIVR '10.

[7]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[8]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Huchuan Lu,et al.  Visual Tracking via Discriminative Sparse Similarity Map , 2014, IEEE Transactions on Image Processing.

[10]  Fuchun Sun,et al.  Fusion tracking in color and infrared images using joint sparse representation , 2012, Science China Information Sciences.

[11]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[14]  Stan Z. Li,et al.  FloatBoost learning and statistical face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Huchuan Lu,et al.  Incremental MPCA for Color Object Tracking , 2010, 2010 20th International Conference on Pattern Recognition.

[16]  Huchuan Lu,et al.  L2-RLS-Based Object Tracking , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Huchuan Lu,et al.  Robust Visual Tracking via Multiple Kernel Boosting With Affinity Constraints , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[18]  Xuelong Li,et al.  A Fine-Grained Image Categorization System by Cellet-Encoded Spatial Pyramid Modeling , 2015, IEEE Transactions on Industrial Electronics.

[19]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Haijun Wang,et al.  Object Tracking via 2DPCA and ℓ2-Regularization , 2016, J. Electr. Comput. Eng..

[21]  Huchuan Lu,et al.  Online Visual Tracking via Two View Sparse Representation , 2014, IEEE Signal Processing Letters.

[22]  Ke Zhang,et al.  A real-time visual object tracking system based on Kalman filter and MB-LBP feature matching , 2014, Multimedia Tools and Applications.

[23]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[24]  Li Bai,et al.  Efficient Minimum Error Bounded Particle Resampling L1 Tracker With Occlusion Detection , 2013, IEEE Transactions on Image Processing.

[25]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[26]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[27]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[28]  Sen Zhang,et al.  Suffix Array Construction in External Memory Using D-Critical Substrings , 2014, TOIS.

[29]  Shuicheng Yan,et al.  TRECVID 2010 Known-item Search by NUS , 2010, TRECVID.

[30]  Andrew Blake,et al.  Sparse Bayesian learning for efficient visual tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[32]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[34]  Shengping Zhang,et al.  Robust object tracking based on sparse representation , 2010, Visual Communications and Image Processing.

[35]  Meng Wang,et al.  Multimedia answering: enriching text QA with media information , 2011, SIGIR.

[36]  Subramanian Ramanathan,et al.  Multitask Linear Discriminant Analysis for View Invariant Action Recognition , 2014, IEEE Transactions on Image Processing.

[37]  Lei Zhang,et al.  Real-Time Object Tracking Via Online Discriminative Feature Selection , 2013, IEEE Transactions on Image Processing.

[38]  Xiaoqin Zhang,et al.  Robust Visual Tracking Based on Incremental Tensor Subspace Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[39]  Yi Yang,et al.  Discovering Discriminative Graphlets for Aerial Image Categories Recognition , 2013, IEEE Transactions on Image Processing.

[40]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, CVPR.

[41]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[42]  Fei Tao,et al.  Robust visual tracking based on structured sparse representation model , 2013, Multimedia Tools and Applications.

[43]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Yue Gao,et al.  Beyond Text QA: Multimedia Answer Generation by Harvesting Web Information , 2013, IEEE Transactions on Multimedia.

[45]  Xiangyu Wang,et al.  Learning to Recommend Descriptive Tags for Questions in Social Forums , 2014, TOIS.

[46]  Yi Yang,et al.  A Probabilistic Associative Model for Segmenting Weakly Supervised Images , 2014, IEEE Transactions on Image Processing.

[47]  Jean-Michel Morel,et al.  Can a Single Image Denoising Neural Network Handle All Levels of Gaussian Noise? , 2014, IEEE Signal Processing Letters.

[48]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[49]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[50]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[51]  Nicu Sebe,et al.  Egocentric Daily Activity Recognition via Multitask Clustering , 2015, IEEE Transactions on Image Processing.

[52]  Yuefeng Ji,et al.  Kernel Based Multiple Cue Adaptive Appearance Model For Robust Real-time Visual Tracking , 2013, IEEE Signal Processing Letters.

[53]  Wen Gao,et al.  Object tracking using incremental 2D-LDA learning and Bayes inference , 2008, 2008 15th IEEE International Conference on Image Processing.

[54]  Honghai Liu,et al.  A fusion method for robust face tracking , 2016, Multimedia Tools and Applications.