Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

[1]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[2]  Roya Maboudian,et al.  Advances in silicon carbide science and technology at the micro- and nanoscales , 2013 .

[3]  Konstantin Vassilevski,et al.  Prospects for SiC electronics and sensors , 2008 .

[4]  A. C. H. Rowe Piezoresistance in silicon and its nanostructures , 2014 .

[5]  S. Dimitrijev,et al.  Thickness dependence of the piezoresistive effect in p-type single crystalline 3C-SiC nanothin films , 2014 .

[6]  Andrey Somov,et al.  Optimization of power consumption for gas sensor nodes: A survey , 2015 .

[7]  Yei Hwan Jung,et al.  Stretchable silicon nanoribbon electronics for skin prosthesis , 2014, Nature Communications.

[8]  Wenchuan Wang,et al.  A hybrid absorption–adsorption method to efficiently capture carbon , 2014, Nature Communications.

[9]  I. Shimoyama,et al.  A sensitive liquid-cantilever diaphragm for pressure sensor , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[10]  R. C. Macridis A review , 1963 .

[11]  Qiang Lin,et al.  High-frequency and high-quality silicon carbide optomechanical microresonators , 2015, Scientific Reports.

[12]  Mehran Mehregany,et al.  Fabrication of low defect density 3C-SiC on SiO2 structures using wafer bonding techniques , 1998 .

[13]  Qin Zhou,et al.  Fast response integrated MEMS microheaters for ultra low power gas detection , 2015 .

[14]  A. Kurtz,et al.  Characterization of n-type beta -SiC as a piezoresistor , 1993 .

[15]  M. Mehregany,et al.  Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications , 2006, IEEE Sensors Journal.

[16]  P. Yang,et al.  Giant piezoresistance effect in silicon nanowires , 2006, Nature nanotechnology.

[17]  D.G. Senesky,et al.  Harsh Environment Silicon Carbide Sensors for Health and Performance Monitoring of Aerospace Systems: A Review , 2009, IEEE Sensors Journal.

[18]  J. Milne,et al.  Giant piezoresistance effects in silicon nanowires and microwires. , 2010, Physical review letters.

[19]  A. Iacopi,et al.  Demonstration of p-type 3C-SiC grown on 150 mm Si(1 0 0) substrates by atomic-layer epitaxy at 1000 °C , 2011 .

[20]  Yuefei Zhang,et al.  Piezoresistance behaviors of ultra-strained SiC nanowires , 2012 .

[21]  Isao Shimoyama,et al.  Viscosity measurement based on the tapping-induced free vibration of sessile droplets using MEMS-based piezoresistive cantilevers. , 2015, Lab on a chip.

[22]  C. Zhang,et al.  Strain Induced Band Dispersion Engineering in Si Nanosheets , 2011 .

[23]  A. Nogaret,et al.  Pressure Sensing and Electronic Amplification with Functionalized Graphite–Silicone Composite , 2013 .

[24]  M. Takata,et al.  SiCOI structure fabricated by catalytic chemical vapor deposition , 2008 .

[25]  S. Dimitrijev,et al.  Piezoresistive Effect of p-Type Single Crystalline 3C-SiC Thin Film , 2014, IEEE Electron Device Letters.

[26]  Martin Eickhoff,et al.  High—temperature Sensors Based on SiC and Diamond Technology , 1999 .

[27]  Robert S. Okojie,et al.  4H-SiC Piezoresistive Pressure Sensors at 800 °C With Observed Sensitivity Recovery , 2015, IEEE Electron Device Letters.

[28]  Kurtz,et al.  Characterization of n-Type p-Sic as a Piezoresistor , 2004 .

[29]  Bin Tang,et al.  Highly sensitive piezoresistance behaviors of n-type 3C-SiC nanowires , 2013 .

[30]  S. Dimitrijev,et al.  The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films , 2015 .

[31]  Toshiyuki Toriyama Piezoresistance consideration on n-type 6H SiC for MEMS-based piezoresistance sensors , 2004 .

[32]  Jinju Zheng,et al.  Piezoresistance behaviors of p-type 6H-SiC nanowires. , 2011, Chemical communications.

[33]  A. Iacopi,et al.  Kinetic surface roughening and wafer bow control in heteroepitaxial growth of 3C-SiC on Si(111) substrates , 2015, Scientific Reports.

[34]  Beth L. Pruitt,et al.  Review: Semiconductor Piezoresistance for Microsystems , 2009, Proceedings of the IEEE.

[35]  Ming-Fa Lin,et al.  Strain Effect on the Electronic Properties of Single Layer and Bilayer Graphene , 2012 .

[36]  S. Dimitrijev,et al.  Orientation dependence of the pseudo-Hall effect in p-type 3C-SiC four-terminal devices under mechanical stress , 2015 .

[37]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[38]  H. Chiriac,et al.  A model of the DC Joule heating in amorphous wires , 1996 .

[39]  Nam-Trung Nguyen,et al.  Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching , 2015 .

[40]  Anthony D. Kurtz,et al.  Characterization of highly doped n- and p-type 6H-SiC piezoresistors , 1998 .

[41]  Igor Paprotny,et al.  MEMS capacitive flow sensor for natural gas pipelines , 2015 .

[42]  Magnus Willander,et al.  Silicon carbide and diamond for high temperature device applications , 2006 .

[43]  C. Jaussaud,et al.  Electrical characterization of SiC for high-temperature thermal-sensor applications , 1995 .

[44]  N. Yang,et al.  Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films. , 2015, ACS applied materials & interfaces.

[45]  M. Stutzmann,et al.  Influence of crystal quality on the electronic properties of n-type 3C-SiC grown by low temperature low pressure chemical vapor deposition , 2004 .

[46]  Li Wang,et al.  Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature , 2015 .

[47]  Jaesung Lee,et al.  Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators , 2014, Nature Communications.

[48]  Beth L. Pruitt,et al.  Piezoresistor design and applications , 2013 .

[49]  C. Zetterling Integrated circuits in silicon carbide for high-temperature applications , 2015 .

[50]  Nam-Trung Nguyen,et al.  The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review , 2015, Journal of Microelectromechanical Systems.

[51]  Pasqualina M. Sarro,et al.  Silicon carbide as a new MEMS technology , 2000 .