Extracting Mobility Statistics from Indexed Spatio-Temporal Datasets

With the recent progress of spatial information technologies and mobile computing technologies, spatio-temporal databases which store information on moving objects including vehicles and mobile users have gained a lot of research in- terests. In this paper, we propose an algorithm to extract mobility statistics from indexed spatio-temporal datasets for the interactive analysis of huge collections of moving object trajectories. We focus on a mobility statistics value called the Markov transition probability, which is based on a cell-based organization of a target space and the Markov chain model. The pro- posed algorithm efficiently computes the specified Markov transition probabilities with the help of a spatial index R-tree. We reduce the statistics computation task to a kind of constraint satisfaction problem that uses a spatial index, and utilize internal

[1]  Nick Roussopoulos,et al.  Direct spatial search on pictorial databases using packed R-trees , 1985, SIGMOD Conference.

[2]  Yannis Theodoridis,et al.  Evaluation of Access Structures for Discretely Moving Points , 1999, Spatio-Temporal Database Management.

[3]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[4]  Bernard Fingleton,et al.  Spatial Data Analysis by Example-Volume 2: Categorical and Directional Data , 1991 .

[5]  Dimitris Papadias,et al.  Algorithms for Querying by Spatial Structure , 1998, VLDB.

[6]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[7]  Bernard Fingleton,et al.  Spatial Data Analysis by Example, Vol. 2: Categorical and Directional Data. , 1990 .

[8]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[9]  Jimeng Sun,et al.  Selectivity estimation for predictive spatio-temporal queries , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[10]  Ming-Syan Chen,et al.  Developing Data Allocation Schemes by Incremental Mining of User Moving Patterns in a Mobile Computing System , 2003, IEEE Trans. Knowl. Data Eng..

[11]  Dimitrios Gunopulos,et al.  Efficient Mining of Spatiotemporal Patterns , 2001, SSTD.

[12]  T. Coburn Spatial Data Analysis by Example , 1991 .

[13]  Thomas Brinkhoff,et al.  A Framework for Generating Network-Based Moving Objects , 2002, GeoInformatica.

[14]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[15]  G. J. G. Upton,et al.  Spatial data Analysis by Example , 1985 .

[16]  Chin-Wan Chung,et al.  Selectivity estimation for spatio-temporal queries to moving objects , 2002, SIGMOD '02.

[17]  Hans-Peter Kriegel,et al.  Efficient processing of spatial joins using R-trees , 1993, SIGMOD Conference.

[18]  Sridhar Ramaswamy,et al.  Selectivity estimation in spatial databases , 1999, SIGMOD '99.