Investigation into stability and interfacial properties of CO2 hydrate-aqueous fluid system

We applied the techniques of Molecular Dynamics (MD) to study the structural and dynamic properties of a stable interface between CO 2 hydrate and aqueous solution. The steady-state interface thickness was evaluated from a set of criteria, with the decay of hydrogen signature being the leading one. Applying the criteria has yielded an interface width of about 10 A.

[1]  M. v. Stackelberg,et al.  Feste Gashydrate II. Struktur und Raumchemie , 1954, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[2]  David Fincham,et al.  Leapfrog Rotational Algorithms , 1992 .

[3]  Alexander P. Lyubartsev,et al.  M.DynaMix – a scalable portable parallel MD simulation package for arbitrary molecular mixtures , 2000 .

[4]  A. Haymet,et al.  Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces , 2002 .

[5]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[6]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[7]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[8]  P. Rossky,et al.  Molecular Structure of the Water−Supercritical CO2 Interface , 2001 .

[9]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[10]  L. Dang,et al.  Importance of Polarization Effects in Modeling the Hydrogen Bond in Water Using Classical Molecular Dynamics Techniques , 1998 .

[11]  Graham Richards,et al.  Intermolecular forces , 1978, Nature.

[12]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[13]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .