Remarks on the Inviscid Limit for the Navier-Stokes Equations for Uniformly Bounded Velocity Fields

We consider the vanishing viscosity limit of the Navier-Stokes equations in a half space, with Dirichlet boundary conditions. We prove that the inviscid limit holds in the energy norm if the product of the components of the Navier-Stokes solutions are equicontinuous at $x_2=0$. A sufficient condition for this to hold is that the tangential Navier-Stokes velocity remains uniformly bounded and has a uniformly integrable tangential gradient near the boundary.

[1]  Roger Temam,et al.  Asymptotic analysis of the linearized Navier-Stokes equations in a channel , 1995, Differential and Integral Equations.

[2]  James P Kelliher,et al.  On the vanishing viscosity limit in a disk , 2006, math-ph/0612027.

[3]  Xiaoming Wang,et al.  A Kato type theorem on zero viscosity limit of Navier-Stokes flows , 2001 .

[4]  Radjesvarane Alexandre,et al.  Well-posedness of the Prandtl equation in Sobolev spaces , 2012, 1203.5991.

[5]  Anna L. Mazzucato,et al.  Vanishing viscosity plane parallel channel flow and related singular perturbation problems , 2008 .

[6]  Jerry L. Bona,et al.  The Zero‐Viscosity Limit of the 2D Navier–Stokes Equations , 2002 .

[7]  James P. Kelliher,et al.  Vanishing viscosity and the accumulation of vorticity on the boundary , 2008, 0805.2402.

[8]  Nader Masmoudi,et al.  Well-posedness for the Prandtl system without analyticity or monotonicity , 2013 .

[9]  Edriss S. Titi,et al.  Title Convergence of the 2 D Euler-α to Euler equations in the Dirichlet case : Indifference to boundary layers Permalink , 2014 .

[10]  Yan Guo,et al.  Prandtl Boundary Layer Expansions of Steady Navier–Stokes Flows Over a Moving Plate , 2014, 1411.6984.

[11]  Gung-Min Gie,et al.  The vanishing viscosity limit for some symmetric flows , 2017, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[12]  Claude Bardos,et al.  Remarks on the inviscid limit for the compressible flows , 2014 .

[13]  Igor Kukavica,et al.  On the inviscid limit of the Navier-Stokes equations , 2014, 1403.5748.

[14]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions, of the Navier-Stokes Equation on a Half-Space.¶I. Existence for Euler and Prandtl Equations , 1998 .

[15]  Edriss S. Titi,et al.  Convergence of the 2D Euler-α to Euler equations in the Dirichlet case: Indifference to boundary layers , 2014, 1403.5682.

[16]  O. Oleinik,et al.  On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid , 1966 .

[17]  B. M. Fulk MATH , 1992 .

[18]  Yan Guo,et al.  Spectral instability of symmetric shear flows in a two-dimensional channel , 2014 .

[19]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[20]  Yasunori Maekawa,et al.  On the Inviscid Limit Problem of the Vorticity Equations for Viscous Incompressible Flows in the Half‐Plane , 2012 .

[21]  Anna L. Mazzucato,et al.  Vanishing viscosity limit for incompressible flow inside a rotating circle , 2008 .

[22]  Roger Temam,et al.  On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity , 1997 .

[23]  Nader Masmoudi,et al.  The Euler Limit of the Navier‐Stokes Equations, and Rotating Fluids with Boundary , 1998 .

[24]  Yan Guo,et al.  A note on Prandtl boundary layers , 2010, 1011.0130.

[25]  Gung-Min Gie,et al.  Asymptotic expansion of the stokes solutions at small viscosity: The case of non-compatible initial data , 2014 .

[26]  Emmanuel Dormy,et al.  On the ill-posedness of the Prandtl equation , 2009, 0904.0434.

[27]  Yan Guo,et al.  Spectral stability of Prandtl boundary layers: An overview , 2014, 1406.4452.

[28]  Igor Kukavica,et al.  On the Local Well-posedness of the Prandtl and Hydrostatic Euler Equations with Multiple Monotonicity Regions , 2014, SIAM J. Math. Anal..

[29]  Michael Taylor,et al.  Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows , 2007, 0709.2056.

[30]  James P. Kelliher,et al.  On Kato's conditions for vanishing viscosity , 2007 .

[31]  Emmanuel Grenier,et al.  On the nonlinear instability of Euler and Prandtl equations , 2000 .

[32]  Nader Masmoudi,et al.  Uniform Regularity for the Navier–Stokes Equation with Navier Boundary Condition , 2010, 1008.1678.

[33]  Yan Guo,et al.  Spectral instability of characteristic boundary layer flows , 2014, 1406.3862.

[34]  Toàn Nguyên,et al.  Remarks on the ill-posedness of the Prandtl equation , 2009, Asymptot. Anal..

[35]  Emil Wiedemann,et al.  Non-uniqueness for the Euler equations: the effect of the boundary , 2013, 1305.0773.

[36]  Igor Kukavica,et al.  On the local existence of analytic solutions to the Prandtl boundary layer equations , 2013 .

[37]  Nader Masmoudi,et al.  Local‐in‐Time Existence and Uniqueness of Solutions to the Prandtl Equations by Energy Methods , 2012, 1206.3629.

[38]  Marco Cannone,et al.  Well-Posedness of the Boundary Layer Equations , 2003, SIAM J. Math. Anal..

[39]  Emil Wiedemann,et al.  Vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow , 2012, 1208.2352.

[40]  Tosio Kato,et al.  Remarks on Zero Viscosity Limit for Nonstationary Navier- Stokes Flows with Boundary , 1984 .

[41]  James P. Kelliher,et al.  Observations on the vanishing viscosity limit , 2014, 1409.7716.

[42]  Edriss S. Titi,et al.  Mathematics and turbulence: where do we stand? , 2013, 1301.0273.

[43]  Russel E. Caflisch,et al.  Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution , 1998 .