Semiclassical energy formulae for power law and log potentials in quantum mechanics
暂无分享,去创建一个
[1] John Ellis,et al. Int. J. Mod. Phys. , 2005 .
[2] R. Hall,et al. Erratum: “Relativistic N-boson systems bound by oscillator pair potentials” [J. Math. Phys. 43, 1237 (2002)] , 2003 .
[3] H. Ciftci,et al. The power law and the logarithmic potentials , 2002, math-ph/0212072.
[4] R. Hall,et al. Generalized comparison theorems in quantum mechanics , 2002, math-ph/0208047.
[5] R. Hall,et al. Convexity and potential sums for Salpeter-type Hamiltonians , 2002, math-ph/0208042.
[6] R. Hall,et al. RELATIVISTIC N-BOSON SYSTEMS BOUND BY OSCILLATOR PAIR POTENTIALS , 2001, math-ph/0110015.
[7] A. D. Alhaidari. Exact solutions of Dirac and Schrodinger equations for a large class of power-law potentials at zero energy , 2001, math-ph/0112001.
[8] R. Hall,et al. BRIEF REPORT: A simple interpolation formula for the spectra of power-law and log potentials , 2000, math-ph/0004010.
[9] J. A. Reyes,et al. 1D Schrödinger equations with Coulomb-type potentials , 1999 .
[10] S. C. Chhajlany,et al. One-dimensional hydrogen atom: a singular potential in quantum mechanics , 1997 .
[11] R. Hall,et al. Bounds on Schrodinger eigenvalues for polynomial potentials in N dimensions , 1997 .
[12] Hall. Spectral geometry and the N-body problem. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[13] R. Hall. Computer-Aided Delusions , 1993 .
[14] R. Hall. Envelope theory in spectral geometry , 1993 .
[15] R. Hall. Mixtures of potentials in quantum mechanics , 1992 .
[16] Hall. Spectral geometry of power-law potentials in quantum mechanics. , 1989, Physical review. A, General physics.
[17] Bohm,et al. Hydrogen atom in one dimension. , 1988, Physical review. A, General physics.
[18] F. Rioux. Exercises in quantum mechanics , 1987 .
[19] H. Mavromatis. Exercises in quantum mechanics , 1986 .
[20] S. Vasan,et al. Higher-order JWKB approximations for radial problems. II. The quartic oscillator , 1984 .
[21] E. Castro,et al. Variational approximation to the spectra of systems with confining potentials , 1982 .
[22] R. Crandall,et al. Ground state energy bounds for potentials ‖x‖ν , 1982 .
[23] J. D. Morgan,et al. Remarks on Turschner's eigenvalue formula , 1981 .
[24] F. Gesztesy. On the one-dimensional Coulomb Hamiltonian , 1980 .
[25] B. Crowley,et al. Approximations to the eigenvalues of the Hamiltonian P2+A mod Xnu mod in the Weyl correspondence limit-a critical appraisal of Turschner's formula , 1979 .
[26] L. Simmons,et al. Limiting spectra from confining potentials , 1979 .
[27] H. Turschner. Exact eigenvalues of the Hamiltonian P2+A mod X mod nu , 1979 .
[28] L. Patel,et al. A radiating charged particle in Einstein's universe , 1979 .
[29] M. Andrews. Singular potentials in one dimension , 1976 .
[30] E. Montroll,et al. Quantum theory of anharmonic oscillators. II. Energy levels of oscillators with x2alpha anharmonicity , 1976 .
[31] P. K. Srivastava,et al. Eigenvalues of ?x2m anharmonic oscillators , 1973 .
[32] D. H. Roberts,et al. One-Dimensional Hydrogen Atom , 1969 .
[33] S. Brendle,et al. Calculus of Variations , 1927, Nature.