Semiclassical energy formulae for power law and log potentials in quantum mechanics

We study a single particle which obeys non-relativistic quantum mechanics in N and has Hamiltonian H = −Δ + V(r), where V(r) = sgn(q)rq. If N ≥ 2, then q > −2, and if N = 1, then q > −1. The discrete eigenvalues Enl may be represented exactly by the semiclassical expression Enl(q) = minr>0{Pnl(q)2/r2 + V(r)}. The case q = 0 corresponds to V(r) = ln(r). By writing one power as a smooth transformation of another, and using envelope theory, it has earlier been proved that the Pnl(q) functions are monotone increasing. Recent refinements to the comparison theorem of QM in which comparison potentials can cross over, allow us to prove for n = 1 that Q(q) = Z(q)P(q) is monotone increasing, even though the factor Z(q) = (1 + q/N)1/q is monotone decreasing. Thus, P(q) cannot increase too slowly. This result yields some sharper estimates for power-potential eigenvalues at the bottom of each angular momentum subspace.

[1]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[2]  R. Hall,et al.  Erratum: “Relativistic N-boson systems bound by oscillator pair potentials” [J. Math. Phys. 43, 1237 (2002)] , 2003 .

[3]  H. Ciftci,et al.  The power law and the logarithmic potentials , 2002, math-ph/0212072.

[4]  R. Hall,et al.  Generalized comparison theorems in quantum mechanics , 2002, math-ph/0208047.

[5]  R. Hall,et al.  Convexity and potential sums for Salpeter-type Hamiltonians , 2002, math-ph/0208042.

[6]  R. Hall,et al.  RELATIVISTIC N-BOSON SYSTEMS BOUND BY OSCILLATOR PAIR POTENTIALS , 2001, math-ph/0110015.

[7]  A. D. Alhaidari Exact solutions of Dirac and Schrodinger equations for a large class of power-law potentials at zero energy , 2001, math-ph/0112001.

[8]  R. Hall,et al.  BRIEF REPORT: A simple interpolation formula for the spectra of power-law and log potentials , 2000, math-ph/0004010.

[9]  J. A. Reyes,et al.  1D Schrödinger equations with Coulomb-type potentials , 1999 .

[10]  S. C. Chhajlany,et al.  One-dimensional hydrogen atom: a singular potential in quantum mechanics , 1997 .

[11]  R. Hall,et al.  Bounds on Schrodinger eigenvalues for polynomial potentials in N dimensions , 1997 .

[12]  Hall Spectral geometry and the N-body problem. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  R. Hall Computer-Aided Delusions , 1993 .

[14]  R. Hall Envelope theory in spectral geometry , 1993 .

[15]  R. Hall Mixtures of potentials in quantum mechanics , 1992 .

[16]  Hall Spectral geometry of power-law potentials in quantum mechanics. , 1989, Physical review. A, General physics.

[17]  Bohm,et al.  Hydrogen atom in one dimension. , 1988, Physical review. A, General physics.

[18]  F. Rioux Exercises in quantum mechanics , 1987 .

[19]  H. Mavromatis Exercises in quantum mechanics , 1986 .

[20]  S. Vasan,et al.  Higher-order JWKB approximations for radial problems. II. The quartic oscillator , 1984 .

[21]  E. Castro,et al.  Variational approximation to the spectra of systems with confining potentials , 1982 .

[22]  R. Crandall,et al.  Ground state energy bounds for potentials ‖x‖ν , 1982 .

[23]  J. D. Morgan,et al.  Remarks on Turschner's eigenvalue formula , 1981 .

[24]  F. Gesztesy On the one-dimensional Coulomb Hamiltonian , 1980 .

[25]  B. Crowley,et al.  Approximations to the eigenvalues of the Hamiltonian P2+A mod Xnu mod in the Weyl correspondence limit-a critical appraisal of Turschner's formula , 1979 .

[26]  L. Simmons,et al.  Limiting spectra from confining potentials , 1979 .

[27]  H. Turschner Exact eigenvalues of the Hamiltonian P2+A mod X mod nu , 1979 .

[28]  L. Patel,et al.  A radiating charged particle in Einstein's universe , 1979 .

[29]  M. Andrews Singular potentials in one dimension , 1976 .

[30]  E. Montroll,et al.  Quantum theory of anharmonic oscillators. II. Energy levels of oscillators with x2alpha anharmonicity , 1976 .

[31]  P. K. Srivastava,et al.  Eigenvalues of ?x2m anharmonic oscillators , 1973 .

[32]  D. H. Roberts,et al.  One-Dimensional Hydrogen Atom , 1969 .

[33]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.