Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations

The use of dense gases in many technological fields requires modern fluid dynamic solvers capable of treating the thermodynamic regions where the ideal gas approximation does not apply. Moreover, in some high molecular fluids, nonclassical fluid dynamic effects appearing in those regions could be exploited to obtain more efficient processes. This work presents the procedures for obtaining nonconventional thermodynamic properties needed by up to date computer flow solvers. Complex equations of state for pure fluids and mixtures are treated. Validation of sound speed estimates and calculations of the fundamental derivative of gas dynamics Γ are shown for several fluids and particularly for Siloxanes, a class of fluids that can be used as working media in high-temperature organic Rankine cycles. Some of these fluids have negative Γ regions if thermodynamic properties are calculated with the implemented modified Peng-Robinson thermodynamic model. Results of flow simulations of one-dimensional channel and two-dimensional turbine cascades will be presented in upcoming publications

[1]  W. Bober,et al.  Nonideal isentropic gas flow through converging-diverging nozzles , 1990 .

[2]  P. A. Thompson,et al.  Existence of Real Fluids with a Negative Fundamental Derivative Γ , 1972 .

[3]  B. Argrow,et al.  Dense Gas Flow in Minimum Length Nozzles , 1995 .

[4]  P. A. Thompson,et al.  Negative shock waves , 1973, Journal of Fluid Mechanics.

[5]  Brian Argrow,et al.  Application of Bethe -Zel'dovich-Thompson Fluids in Organic Rankine Cycle Engines , 2000 .

[6]  J J Korte,et al.  Inviscid Design of Hypersonic Wind Tunnel Nozzles for a Real Gas , 2000 .

[7]  A. I. Kalina,et al.  Combined-Cycle System With Novel Bottoming Cycle , 1984 .

[8]  Charles H. Marston,et al.  Gas turbine bottoming cycles: Triple-pressure steam versus Kalina , 1995 .

[9]  Layne T. Watson,et al.  Supersonic flows of dense gases in cascade configurations , 1997, Journal of Fluid Mechanics.

[10]  C. Cravero,et al.  A CFD Model for Real Gas Flows , 2000 .

[11]  Brian Argrow Computational analysis of dense gas shock tube flow , 1996 .

[12]  E. D. Rogdakis Thermodynamic analysis, parametric study and optimum operation of the Kalina cycle , 1996 .

[13]  Eric W. Lemmon,et al.  Thermodynamic properties for the alternative refrigerants , 1998 .

[14]  M. Cramer,et al.  Nonclassical Dynamics of Classical Gases , 1991 .

[15]  J. Gallagher,et al.  Thermodynamic Properties of Ammonia , 1978 .

[16]  Michael R. Moldover,et al.  Gas‐filled spherical resonators: Theory and experiment , 1986 .

[17]  R. Aungier,et al.  A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications , 1995 .

[18]  J. Prausnitz Some new frontiers in chemical engineering thermodynamics , 1995 .

[19]  Marcel Vinokur,et al.  Generalized Flux-Vector splitting and Roe average for an equilibrium real gas , 1990 .

[20]  Ross Taylor Automatic derivation of thermodynamic property functions using computer algebra , 1997 .

[21]  Brian Argrow,et al.  Nonclassical Dense Gas Flows for Simple Geometries , 1998 .

[22]  Brian Argrow,et al.  Two-dimensional shock tube flow for dense gases , 1997 .

[23]  S. Park,et al.  On the suppression of shock-induced separation in Bethe–Zel'dovich–Thompson fluids , 1999, Journal of Fluid Mechanics.

[24]  M. Grigiante,et al.  Vapor phase acoustic measurements for R125 and development of a Helmholtz free energy equation , 2000 .

[25]  M.J.E. Verschoor,et al.  Description of the SMR cycle, which combines fluid elements of steam and organic Rankine cycles , 1995 .

[26]  Charles H. Marston,et al.  Parametric Analysis of the Kalina Cycle , 1989 .

[27]  Richard J. Fitzgerald Traveling‐Wave Thermoacoustic Heat Engines Attain High Efficiency , 1999 .

[28]  Roland Span,et al.  Multiparameter equations of state — recent trends and future challenges , 2001 .

[29]  D. Wilcock Vapor Pressure-Viscosity Relations in Methylpolysiloxanes , 1946 .

[30]  S. Sandler Models for Thermodynamic and Phase Equilibria Calculations , 1993 .

[31]  Duane H. Smith,et al.  Improved phase boundary for one-component vapor-liquid equilibrium: incorporating critical behavior and cubic equations of state , 1995 .

[32]  W. K. Anderson,et al.  Transonic Similarity Theory Applied to a Supercritical Airfoil in Heavy Gas , 1999 .

[33]  Luigi Vigevano,et al.  An Evaluation of Roe's Scheme Generalizations for Equilibrium Real Gas Flows , 1997 .

[34]  Paul Glaister,et al.  An approximate linearised Riemann solver for the Euler equations for real gases , 1988 .

[35]  Costante Mario Invernizzi,et al.  Potential performance of real gas Stirling cycle heat pumps , 1996 .

[36]  Meng-Sing Liou,et al.  Splitting of inviscid fluxes for real gases , 1990 .

[37]  M. S. Cramer Negative nonlinearity in selected fluorocarbons , 1989 .

[38]  David Shan-Hill Wong,et al.  A theoretically correct mixing rule for cubic equations of state , 1992 .

[39]  Yu-Chun Hou,et al.  Development of an equation of state for gases , 1955 .

[40]  Roland Span,et al.  Multiparameter Equations of State: An Accurate Source of Thermodynamic Property Data , 2000 .

[41]  A numerical study on the use of sulfur hexafluoride as a test gas for wind tunnels , 1990 .

[42]  Ora L. Flaningam,et al.  Vapor pressures of poly(dimethylsiloxane) oligomers , 1986 .

[43]  W. Schmidt,et al.  Theoretical Investigations of Real Gas Effects in Cryogenic Wind Tunnels , 1978 .

[44]  R. Stryjek,et al.  PRSV: An improved peng—Robinson equation of state for pure compounds and mixtures , 1986 .

[46]  Mounir B. Ibrahim,et al.  A Kalina Cycle Application for Power Generation , 1993 .

[47]  G. Angelino,et al.  Real gas effects in Stirling engines , 2000, Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) (Cat. No.00CH37022).

[48]  Bernard Grossman,et al.  Analysis of flux-split algorithms for Euler's equations with real gases , 1989 .

[49]  G. Angelino,et al.  Multicomponent Working Fluids For Organic Rankine Cycles (ORCs) , 1998 .

[50]  Marco Luciano Savini,et al.  Transonic and Supersonic Inviscid Computations in Cascades Using Adaptive Unstructured Meshes , 1991 .

[51]  T. Heppenstall,et al.  Advanced gas turbine cycles for power generation: a critical review , 1998 .