Numerical resolution of scalar convex equations : explicit stability, entropy and convergence conditions
暂无分享,去创建一个
[1] Bruno Després,et al. Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..
[2] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[3] Jian-Guo Liu,et al. Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions , 1999, Math. Comput..
[4] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[5] P. Souganidis,et al. Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations , 1995 .
[6] Clint Dawson,et al. High Resolution Schemes for Conservation Laws with Locally Varying Time Steps , 2000, SIAM J. Sci. Comput..
[7] Philippe G. LeFloch,et al. Convergence of finite difference schemes for conservation laws in several space dimensions , 1991 .
[8] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .
[9] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[10] S. Osher,et al. Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .
[11] Frédéric Lagoutière,et al. Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .
[12] R. LeVeque. Numerical methods for conservation laws , 1990 .
[13] Frederic COQUELtt. CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS: A GENERAL THEORY* , 1993 .
[14] B. Després,et al. Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire , 1999 .
[15] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[16] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .