Description Logics-Based Modelling for Precise Information Retrieval

In professional environments, users have a good knowledge about their domain of interest as well as the documents they consult regularly. In order to carry out their professional tasks, they need an Information Retrieval System (IRS) that allows them to find a precise answer to their information needs. Generally speaking, they know about documents content that may satisfy their information needs. Thus, during the retrieval task, they try to complete the information that they have and that is insufficient. Their information needs are in this case formulated through precise queries. The qualifier ”precise” denotes a query that contains: i) a very specialised terminology and ii) a complex structure. Through a precise query, a user can describe his information need using explicit semantic relationships between the descriptors of his query. He also can use boolean operators or quantification (at least, all, etc.) in order to specify the number of elements that the desired document should contain. In order to illustrate some characteristics of precise queries, we present here some query examples.

[1]  Jean-Pierre Chevallet Un modèle logique de recherche d'informations appliqué au formalisme des graphes conceptuels : le prototype ELEN et son expérimentation sur un corpus de composants logiciels , 1992 .

[2]  Mohand Boughanem,et al.  Semantic cores for representing documents in IR , 2005, SAC '05.

[3]  Ellen M. Voorhees,et al.  Query expansion using lexical-semantic relations , 1994, SIGIR '94.

[4]  Ellen M. Voorhees Natural Language Processing and Information Retrieval , 1999, SCIE.

[5]  Mustapha Baziz Indexation conceptuelle guidée par ontologie pour la recherche d'information , 2005 .

[6]  Mark Sanderson,et al.  Word sense disambiguation and information retrieval , 1994, SIGIR '94.

[7]  Catherine Berrut Une méthode d'indexation fondée sur l'analyse sémantique de documents spécialisés : le prototype RIME et son application à un corpus médical , 1988 .

[8]  Umberto Straccia,et al.  A model of information retrieval based on a terminological logic , 1993, SIGIR.

[9]  Rada Mihalcea,et al.  Semantic Indexing using WordNet Senses , 2000 .

[10]  W. Bruce Croft,et al.  Lexical ambiguity and information retrieval , 1992, TOIS.

[11]  Deniz Yuret,et al.  Word Sense Disambiguation for Information Retrieval , 1999, AAAI/IAAI.

[12]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[13]  Vipul Kashyap,et al.  Representing the UMLS Semantic Network Using OWL: (Or "What's in a Semantic Web Link?") , 2003, SEMWEB.

[14]  Mohand Boughanem,et al.  Désambiguïsation et expansion de requêtes dans un SRI. Etude de l'apport des liens sémantiques , 2003, Ingénierie des Systèmes d Inf..

[15]  Chris Biemann Semantic Indexing with Typed Terms Using Rapid Annotation , 2005 .

[16]  Alan F. Smeaton,et al.  Experiments on using semantic distances between words in image caption retrieval , 1996, SIGIR '96.

[17]  Hans-Peter Frei,et al.  Concept based query expansion , 1993, SIGIR.

[18]  Rada Mihalcea,et al.  An Iterative Approach to Word Sense Disambiguation , 2000, FLAIRS.

[19]  Pablo Castells,et al.  An Ontology-Based Information Retrieval Model , 2005, ESWC.