Crystal Structure and Microwave Dielectric Properties of Alkaline‐Earth Hafnates, AHfO3 (A=Ba, Sr, Ca)

The crystal structure and microwave (MW) dielectric properties of AHfO3 (A=Ba, Sr, and Ca) ceramics prepared by the solid-state route have been investigated. X-ray and electron diffraction show BaHfO3 to be an untilted cubic perovskite (a0a0a0, space group), whereas SrHfO3 and CaHfO3 are both orthorhombically distorted perovskites (a−b+a−, space group Pnma). AHfO3 ceramics with a relative density ∼90% of the theoretical X-ray density and microstructures consisting of randomly oriented equiaxed grains were prepared by firing at 1750°C for 6 h. Conventional transmission electron microscopy reveals the occurrence of long parallel ferroelastic domains in the subgrain microstructure of CaHfO3 and SrHfO3. At room temperature and MW frequencies, AHfO3 ceramics, where A=Ba, Sr, and Ca, have ɛr∼24.2, Q×fr∼14 250 GHz (at 8.9 GHz) and τf∼+111 ppm/K; ɛr∼23.5, Q×fr∼33 534 GHz (at 9.3 GHz), and τf∼−63 ppm/K; and ɛr∼21.4, Q×fr∼15 950 GHz (at 8.9 GHz), and τf∼−33 ppm/K, respectively. The ion polarizability for Hf4+ in a cubic perovskite environment is calculated to be 3.32 A3, whereas in a noncubic environment it increases to 4.36–4.47 A3. Finally, the dielectric properties of AHfO3 (A=Ba, Sr, and Ca) are compared with their titanate and zirconate counterparts.

[1]  M. Sebastian,et al.  Doped Ca(Ca1/4A2/4Ti1/4)O3 (A=Nb, Ta) Dielectrics for Microwave Telecommunication Applications , 2007 .

[2]  D. Jia,et al.  Emission of Pr3+ from two sites in CaHfO3 perovskite , 2007 .

[3]  Hong-Yang Lu,et al.  〈111〉 Rotation Twins in an Orthorhombic LaGaO3 Perovskite , 2007 .

[4]  T. Adams,et al.  High intrinsic permittivity in Na1∕2Bi1∕2Cu3Ti4O12 , 2006 .

[5]  M. Sebastian,et al.  Synthesis, characterization, and microwave dielectric properties of ATiO3 (A = Co, Mn, Ni) ceramics , 2006 .

[6]  S. Yamanaka,et al.  Thermal and mechanical properties of perovskite-type barium hafnate , 2006 .

[7]  Hong-Yang Lu,et al.  Phase-Transformation-Induced Twinning in Orthorhombic LaGaO3: {121} and [010] Twins , 2006 .

[8]  D. Sinclair,et al.  Microwave dielectric properties of hexagonal 12R-Ba3LaNb3O12 ceramics , 2006 .

[9]  R. L. Moreira,et al.  Synthesis and characterisation of La0.4Ba0.6Ti0.6RE0.4O3 (where RE =Y, Yb) ceramics. , 2006 .

[10]  D. Sinclair,et al.  Dielectric Properties of the “Twinned” 8H‐Hexagonal Perovskite Ba8Nb4Ti3O24 , 2006 .

[11]  M. Nakada,et al.  Ultra wide range dielectric spectroscopy of strontium titanate-strontium zirconate solid solution , 2006 .

[12]  M. Lanagan,et al.  Structure and Microwave Dielectric Properties of Ca_1−xY_xTi_1−xAl_xO_3 (CYTA) Ceramics , 2005 .

[13]  A. Llobet,et al.  Crystal Chemistry and Microwave Dielectric Properties of Ba3MNb2-xSbxO9 (M = Mg, Ni, Zn) , 2005 .

[14]  N. Alford,et al.  Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina , 2005 .

[15]  I. Reaney,et al.  Structure–Property Relations in xBaTiO3–(1−x)La(Mg1/2Ti1/2)O3 Solid Solutions , 2004 .

[16]  H. Koinuma,et al.  Domain structure of epitaxial CaHfO3 gate insulator films on SrTiO3 , 2004 .

[17]  D. Suvorov,et al.  Solid-State Reactions Occurring during the Synthesis of CaTiO3−NdAlO3 Perovskite Solid Solutions , 2004 .

[18]  I. Levin,et al.  Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3–CaZrO3 system , 2003 .

[19]  D. Suvorov,et al.  Characterization of CaTiO3-NdAlO3 dielectric ceramics , 2003 .

[20]  D. Sinclair,et al.  Microwave Dielectric Properties of Gallium‐Doped Hexagonal Barium Titanate Ceramics , 2003 .

[21]  N. F. Kartenko,et al.  Microwave dielectric properties of ceramics based on CaTiO3–LnMO3 System (Ln–La, Nd; M–Al, Ga) , 2003 .

[22]  K. Hong,et al.  Twin structures in lanthanum, praseodymium, and neodymium aluminate ceramics , 2001 .

[23]  I. Levin,et al.  Phase transitions and microwave dielectric properties in the perovskite-like Ca(Al0.5Nb0.5)O3−CaTiO3 system , 2001 .

[24]  D. Cannell,et al.  On the temperature coefficient of resonant frequency in microwave dielectrics , 2001 .

[25]  Ju-woong Jang,et al.  Ferroelastic twins in LaAlO3 polycrystals , 1999 .

[26]  K. Hong,et al.  Mixture-like behavior in the microwave dielectric properties of the (1-x)LaAlO3-xSrTiO3 system , 1999 .

[27]  B. Chakoumakos,et al.  Phase transitions in perovskite at elevated temperatures - a powder neutron diffraction study , 1999 .

[28]  G. Arlt Strong ultrasonic microwaves in ferroelectric ceramics , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  V. Sivasubramanian,et al.  Microwave Dielectric Properties of Certain Simple Alkaline Earth Perovskite Compounds as a Function of Tolerance Factor , 1997 .

[30]  Wolfram Wersing,et al.  Microwave ceramics for resonators and filters , 1996 .

[31]  I. Reaney,et al.  Dielectric and Structural Characteristics of Ba- and Sr-based Complex Perovskites as a Function of Tolerance Factor , 1994 .

[32]  U. Böttger,et al.  Dielectric dispersion of ferroelectric ceramics and single crystals at microwave frequencies , 1994 .

[33]  Yusheng Zhao,et al.  Thermal expansion and structural distortion of perovskite — data for NaMgF3 perovskite. Part I , 1993 .

[34]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[35]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[36]  U. Böttger,et al.  Dielectric microwave dispersion in PZT ceramics , 1992 .

[37]  R. Newnham,et al.  Microwave Dielectric Properties of Antiferroelectric Lead Zirconate , 1988 .

[38]  I. Ueda,et al.  Ba(Zn1/3Ta2/3)O3 Ceramics with Low Dielectric Loss at Microwave Frequencies , 1983 .

[39]  R. C. Kell,et al.  High‐Permittivity Temperature‐Stable Ceramic Dielectrics with Low Microwave Loss , 1973 .

[40]  P. Harrop Temperature coefficients of capacitance of solids , 1969 .

[41]  H. Schwarz,et al.  Über Zirkonate, Hafnate und Thorate von Barium, Strontium, Lithium und Natrium , 1968 .

[42]  C. E. Curtis,et al.  Some Properties of Hafnium Oxide, Hafnium Silicate, Calcium Hafnate, and Hafnium Carbide , 1954 .