A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations

The microphysics module of the version of the Regional Atmospheric Modeling System (RAMS) maintained at Colorado State University has undergone a series of improvements, including the addition of a large-clouddroplet mode from 40 to 80 mm in diameter and the prognostic number concentration of cloud droplets through activation of cloud condensation nuclei (CCN) and giant CCN (GCCN). The large-droplet mode was included to represent the dual modes of cloud droplets that often appear in nature. The activation of CCN is parameterized through the use of a Lagrangian parcel model that considers ambient cloud conditions for the nucleation of cloud droplets from aerosol. These new additions were tested in simulations of a supercell thunderstorm initiated from a warm, moist bubble. Model response was explored in regard to the microphysics sensitivity to the largedroplet mode, number concentrations of CCN and GCCN, size distributions of these nuclei, and the presence of nuclei sources and sinks.

[1]  Joanne Simpson,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations , 1995 .

[2]  A. B. Long Solutions to the Droplet Collection Equation for Polynomial Kernels , 1974 .

[3]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[4]  Joanne Simpson,et al.  An Ice-Water Saturation Adjustment , 1989 .

[5]  David B. Johnson The Role of Giant and Ultragiant Aerosol Particles in Warm Rain Initiation. , 1982 .

[6]  B. Stevens,et al.  Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model , 2000 .

[7]  L. Radke,et al.  The Structures of Summer Convective Clouds in Eastern Montana. I: Natural Clouds , 1980 .

[8]  G. K. Mather,et al.  Calculations Pertaining to Hygroscopic Seeding with Flares , 1997 .

[9]  S. Rutledge,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands , 1983 .

[10]  Frederick H. Carr,et al.  A Prognostic Cloud Scheme for Operational NWP Models , 1997 .

[11]  W. Cotton,et al.  New RAMS cloud microphysics parameterization part I: the single-moment scheme , 1995 .

[12]  Yefim L. Kogan,et al.  The simulation of a convective cloud in a 3-D model with explicit microphysics , 1991 .

[13]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[14]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .

[15]  Mikhail Ovtchinnikov,et al.  An Investigation of Ice Production Mechanisms in Small Cumuliform Clouds Using a 3D Model with Explicit Microphysics. Part I: Model Description , 2000 .

[16]  William R. COTTON-Experimental Numerical Simulation of Precipitation Development in Supercooled Cumuli-Part I , 1972 .

[17]  A. Heymsfield,et al.  Cirrus crystal nucleation by homogeneous freezing of solution droplets , 1989 .

[18]  W. Cotton,et al.  RAMS 2001: Current status and future directions , 2003 .

[19]  G. Feingold,et al.  An Efficient Numerical Solution to the Stochastic Collection Equation , 1987 .

[20]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[21]  J. Verlinde,et al.  Analytical Solutions to the Collection Growth Equation: Comparison with Approximate Methods and Application to Cloud Microphysics Parameterization Schemes , 1990 .

[22]  R. D. Low A Generalized Equation for the Solution Effect in Droplet Growth , 1969 .

[23]  J. W. Telford A NEW ASPECT OF COALESCENCE THEORY , 1955 .

[24]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[25]  A. H. Woodcock,et al.  Salt Particles and Raindrops in Hawaii , 1971 .

[26]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part IV. A New Parameterization , 1974 .

[27]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[28]  Sonia M. Kreidenweis,et al.  The Impact of Giant Cloud Condensation Nuclei on Drizzle Formation in Stratocumulus: Implications for Cloud Radiative Properties , 1999 .

[29]  S. Mossop The influence of drop size distribution on the production of secondary ice particles during graupel growth , 1978 .

[30]  W. Hall,et al.  A Detailed Microphysical Model Within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results , 1980 .

[31]  W. Cotton,et al.  Parameterization of the Atmospheric Surface Layer , 1977 .

[32]  Song-You Hong,et al.  Implementation of Prognostic Cloud Scheme for a Regional Spectral Model , 1998 .

[33]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[34]  T. Clark Use of Log-Normal Distributions for Numerical Calculations of Condensation and Collection , 1976 .

[35]  Graham Feingold,et al.  Evolution of Raindrop Spectra. Part I: Solution to the Stochastic Collection/Breakup Equation Using the Method of Moments. , 1988 .

[36]  T. Clark,et al.  A Cloud Physical Parameterization Method Using Movable Basis Functions: Stochastic Coalescence Parcel Calculations , 1983 .

[37]  J. Hallett,et al.  Production of secondary ice particles during the riming process , 1974, Nature.

[38]  Tsutomu Takahashi,et al.  Warm Rain, Giant Nuclei and Chemical Balance--A Numerical Model. , 1976 .

[39]  Michael Warshaw,et al.  Cloud Droplet Coalescence: Statistical Foundations and a One-Dimensional Sedimentation Model1 , 1967 .

[40]  R. Anthes,et al.  Simulations of Frontogenesis in a Moist Atmosphere Using Alternative Parameterizations of Condensation and Precipitation , 1984 .

[41]  E. Berry,et al.  Cloud Droplet Growth by Collection , 1967 .

[42]  Z. Levin,et al.  Numerical simulation of hygroscopic seeding in a convective cloud , 1994 .

[43]  Vicente Pérez-Muñuzuri,et al.  Impact of Cloud Analysis on Numerical Weather Prediction in the Galician Region of Spain , 2003 .

[44]  A. Heymsfield,et al.  Parameterizations of Condensational Growth of Droplets for Use in General Circulation Models , 1992 .

[45]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.