Composition Methods for Differential Equations with Processing
暂无分享,去创建一个
[1] J. M. Sanz-Serna,et al. Order conditions for numerical integrators obtained by composing simpler integrators , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[2] Seok-Jin Kang,et al. Free Lie Algebras, Generalized Witt Formula, and the Denominator Identity☆ , 1996 .
[3] M. A. López-Marcos,et al. Explicit Symplectic Integrators Using Hessian-Vector Products , 1997, SIAM J. Sci. Comput..
[4] M. Suzuki,et al. General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .
[5] P.-V. Koseleff. Formal Calculus for Lie Methods in Hamiltonian Mechanics (Translation) , 1994 .
[6] Fernando Casas,et al. On the Numerical Integration of Ordinary Differential Equations by Processed Methods , 2004, SIAM J. Numer. Anal..
[7] S. Blanes. High order numerical integrators for differential equations using composition and processing of low order methods , 2001 .
[8] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[9] R. Folk,et al. Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] C. Reutenauer. Free Lie Algebras , 1993 .
[11] H. Munthe-Kaas,et al. Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[12] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[13] Robert I. McLachlan,et al. MORE ON SYMPLECTIC CORRECTORS , 1996 .
[14] Fernando Casas,et al. High-order Runge-Kutta-Nyström geometric methods with processing , 2001 .
[15] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[16] Fernando Casas,et al. Symplectic Integration with Processing: A General Study , 1999, SIAM J. Sci. Comput..
[17] Seok-Jin Kang,et al. Lie Algebras and Their Representations , 1996 .
[18] J. Butcher. The effective order of Runge-Kutta methods , 1969 .
[19] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[20] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[21] A. Jamiołkowski. Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .
[22] William Kahan,et al. Composition constants for raising the orders of unconventional schemes for ordinary differential equations , 1997, Math. Comput..
[23] Masuo Suzuki,et al. Quantum Monte Carlo methods and general decomposition theory of exponential operators and symplectic integrators , 1994 .
[24] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[25] Robert I. McLachlan. Families of High-Order Composition Methods , 2004, Numerical Algorithms.
[26] J. M. Sanz-Serna,et al. The number of conditions for a Runge-Kutta method to have effective order p , 1996 .
[27] S. Blanes,et al. Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .