Composition Methods for Differential Equations with Processing

We construct numerical integrators for differential equations up to order 12 obtained by composition of basic integrators. The following cases are considered: (i) composition for a system separable in two solvable parts, (ii) composition using as basic methods a first-order integrator and its adjoint, (iii) composition using second-order symmetric methods, and (iv) composition using fourth-order symmetric methods. Each scheme is implemented with a processor or corrector to improve their efficiency, and this can be done virtually cost-free.

[1]  J. M. Sanz-Serna,et al.  Order conditions for numerical integrators obtained by composing simpler integrators , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Seok-Jin Kang,et al.  Free Lie Algebras, Generalized Witt Formula, and the Denominator Identity☆ , 1996 .

[3]  M. A. López-Marcos,et al.  Explicit Symplectic Integrators Using Hessian-Vector Products , 1997, SIAM J. Sci. Comput..

[4]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[5]  P.-V. Koseleff Formal Calculus for Lie Methods in Hamiltonian Mechanics (Translation) , 1994 .

[6]  Fernando Casas,et al.  On the Numerical Integration of Ordinary Differential Equations by Processed Methods , 2004, SIAM J. Numer. Anal..

[7]  S. Blanes High order numerical integrators for differential equations using composition and processing of low order methods , 2001 .

[8]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[9]  R. Folk,et al.  Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  C. Reutenauer Free Lie Algebras , 1993 .

[11]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[13]  Robert I. McLachlan,et al.  MORE ON SYMPLECTIC CORRECTORS , 1996 .

[14]  Fernando Casas,et al.  High-order Runge-Kutta-Nyström geometric methods with processing , 2001 .

[15]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[16]  Fernando Casas,et al.  Symplectic Integration with Processing: A General Study , 1999, SIAM J. Sci. Comput..

[17]  Seok-Jin Kang,et al.  Lie Algebras and Their Representations , 1996 .

[18]  J. Butcher The effective order of Runge-Kutta methods , 1969 .

[19]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .

[20]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[21]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[22]  William Kahan,et al.  Composition constants for raising the orders of unconventional schemes for ordinary differential equations , 1997, Math. Comput..

[23]  Masuo Suzuki,et al.  Quantum Monte Carlo methods and general decomposition theory of exponential operators and symplectic integrators , 1994 .

[24]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[25]  Robert I. McLachlan Families of High-Order Composition Methods , 2004, Numerical Algorithms.

[26]  J. M. Sanz-Serna,et al.  The number of conditions for a Runge-Kutta method to have effective order p , 1996 .

[27]  S. Blanes,et al.  Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .