Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency

[1]  John R. Benemann,et al.  Biomass Productivities in Wild Type and Pigment Mutant of Cyclotella sp. (Diatom) , 2009, Applied biochemistry and biotechnology.

[2]  Stephen P. Long,et al.  Meeting US biofuel goals with less land: the potential of Miscanthus , 2008 .

[3]  G Charles Dismukes,et al.  Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. , 2008, Current opinion in biotechnology.

[4]  S. Long,et al.  What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? , 2008, Current opinion in biotechnology.

[5]  R. Perrin,et al.  Net energy of cellulosic ethanol from switchgrass , 2008, Proceedings of the National Academy of Sciences.

[6]  A. McDowall,et al.  Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. , 2007, Plant biotechnology journal.

[7]  A. Melis Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae) , 2007, Planta.

[8]  J. Grobbelaar,et al.  Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? , 2007, Journal of Applied Phycology.

[9]  José G García-Cerdán,et al.  REP27, a Tetratricopeptide Repeat Nuclear-Encoded and Chloroplast-Localized Protein, Functions in D1/32-kD Reaction Center Protein Turnover and Photosystem II Repair from Photodamage1[OA] , 2007, Plant Physiology.

[10]  A. Melis,et al.  Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene , 2007, Planta.

[11]  S. Long,et al.  Can improvement in photosynthesis increase crop yields? , 2006, Plant, cell & environment.

[12]  J. Nickelsen,et al.  NAB1 Is an RNA Binding Protein Involved in the Light-Regulated Differential Expression of the Light-Harvesting Antenna of Chlamydomonas reinhardtii , 2005, The Plant Cell Online.

[13]  Graham R Fleming,et al.  Toward an understanding of the mechanism of nonphotochemical quenching in green plants. , 2004, Biochemistry.

[14]  H. Teramoto,et al.  The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: protein composition, gene structures and phylogenic implications. , 2004, Plant & cell physiology.

[15]  J. Scurlock,et al.  The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe , 2003 .

[16]  T. Masuda,et al.  Chlorophyll antenna size adjustments by irradiance in Dunaliella salina involve coordinate regulation of chlorophyll a oxygenase (CAO) and Lhcb gene expression , 2003, Plant Molecular Biology.

[17]  Juergen E. W. Polle,et al.  tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size , 2003, Planta.

[18]  E. Boekema,et al.  Plants lacking the main light-harvesting complex retain photosystem II macro-organization , 2003, Nature.

[19]  J. Moroney CARBON CONCENTRATING MECHANISMS IN AQUATIC PHOTOSYNTHETIC ORGANISMS: A REPORT ON CCM 2001 , 2001 .

[20]  A. Melis,et al.  Hydrogen production. Green algae as a source of energy. , 2001, Plant physiology.

[21]  H. Teramoto,et al.  Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. , 2001, Plant & cell physiology.

[22]  K. Niyogi,et al.  Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. , 2001, Plant & cell physiology.

[23]  M. Tsuzuki,et al.  Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata , 2001, Journal of Applied Phycology.

[24]  T. Happe,et al.  A Novel Type of Iron Hydrogenase in the Green AlgaScenedesmus obliquus Is Linked to the Photosynthetic Electron Transport Chain* , 2001, The Journal of Biological Chemistry.

[25]  J. Benemann,et al.  Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on carbon source , 2000, Planta.

[26]  K. Niyogi,et al.  PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. , 1999, Annual review of plant physiology and plant molecular biology.

[27]  R. Ueda,et al.  Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment , 1999, Journal of Applied Phycology.

[28]  A. Melis,et al.  Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage ? , 1999, Trends in plant science.

[29]  B J Lemon,et al.  X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. , 1998, Science.

[30]  John R. Benemann,et al.  Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells , 1998, Journal of Applied Phycology.

[31]  M. Tsuzuki,et al.  Reduced photoinhibition of a phycocyanin-deficient mutant of Synechocystis PCC 6714 , 1998, Journal of Applied Phycology.

[32]  J. Benemann,et al.  Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae) , 1998, Photosynthesis Research.

[33]  Raymond E. Kirk,et al.  Encyclopedia of chemical technology , 1998 .

[34]  R. Ueda,et al.  Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments , 1997, Journal of Applied Phycology.

[35]  Yuan-Kun Lee,et al.  Commercial production of microalgae in the Asia-Pacific rim , 1997, Journal of Applied Phycology.

[36]  K. Niyogi,et al.  Dna insertional mutagenesis for the elucidation of a Photosystem II repair process in the green alga Chlamydomonas reinhardtii , 1997, Photosynthesis Research.

[37]  H. Ito,et al.  Conversion of Chlorophyll b to Chlorophyll a and the Assembly of Chlorophyll with Apoproteins by Isolated Chloroplasts , 1997, Plant physiology.

[38]  L. Staehelin,et al.  Severity of Mutant Phenotype in a Series of Chlorophyll-Deficient Wheat Mutants Depends on Light Intensity and the Severity of the Block in Chlorophyll Synthesis , 1996, Plant physiology.

[39]  A. Grossman,et al.  Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. , 1996, The EMBO journal.

[40]  P. Falkowski,et al.  Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[41]  N. Huner,et al.  Photosystem II Excitation Pressure and Development of Resistance to Photoinhibition (I. Light-Harvesting Complex II Abundance and Zeaxanthin Content in Chlorella vulgaris) , 1995, Plant physiology.

[42]  S. Purton,et al.  Playing tag with Chlamydomonas. , 1994, Trends in cell biology.

[43]  A. Grossman,et al.  Mutants of Chlamydomonas with Aberrant Responses to Sulfur Deprivation. , 1994, The Plant cell.

[44]  P. Lefebvre,et al.  Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. , 1993, Genetics.

[45]  N. Nakicenovic Carbon dioxide mitigation measures and options , 1993 .

[46]  J. A. Mulloney,et al.  Mitigation of carbon dioxide releases from power production via “sustainable agri-power”: The synergistic combination of controlled environmental agriculture (large commercial greenhouses) and disbursed fuel cell power plants , 1993 .

[47]  L. Brown,et al.  Aquatic biomass and carbon dioxide trapping , 1993 .

[48]  M. Ikeuchi,et al.  A nomenclature for the genes encoding the chlorophylla/b-binding proteins of higher plants , 1992, Plant Molecular Biology Reporter.

[49]  P. Falkowski,et al.  Light Intensity-Induced Changes in cab mRNA and Light Harvesting Complex II Apoprotein Levels in the Unicellular Chlorophyte Dunaliella tertiolecta. , 1991, Plant physiology.

[50]  A. Melis,et al.  Dynamics of photosynthetic membrane composition and function , 1991 .

[51]  A. Melis,et al.  Changes of Photosystem Stoichiometry during Cell Growth in Dunaliella salina Cultures , 1991 .

[52]  James R. Bolton,et al.  THE MAXIMUM EFFICIENCY OF PHOTOSYNTHESIS * , 1991 .

[53]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Lefebvre,et al.  Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase , 1989, The Journal of cell biology.

[55]  Elizabeth H. Harris,et al.  The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use , 1989 .

[56]  A. Melis Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size , 1989 .

[57]  A. Melis,et al.  Minimum photosynthetic unit size in System I and System II of barley chloroplasts , 1988 .

[58]  O. Björkman,et al.  Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins , 1987, Planta.

[59]  A. Melis,et al.  Structural and functional organization of the photosystems in spinach chloroplasts:Antenna size, relative electron transport capacity, and chlorophyll composition , 1983 .

[60]  Laurel A. Loeblich,et al.  Photosynthesis and Pigments Influenced By Light Intensity and Salinity in the Halophile Dunaliella Salina (Chlorophyta) , 1982, Journal of the Marine Biological Association of the United Kingdom.

[61]  A. Ley,et al.  Absolute absorption cross-sections for Photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris , 1982 .

[62]  A. Thielen,et al.  Quantum efficiency and antenna size of Photosystems IIα, IIβ and I in tobacco chloroplasts , 1981 .

[63]  J. Monteith Climate and the efficiency of crop production in Britain , 1977 .

[64]  B. Kok,et al.  Photosynthesis: Limited Yields, Unlimited Dreams , 1977 .

[65]  W. L. Butler,et al.  Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. , 1975, Biochimica et biophysica acta.

[66]  H. V. Gorkom,et al.  Identification of the reduced primary electron acceptor of Photosystem II as a bound semiquinone anion , 1974 .

[67]  B. Kê,et al.  Difference spectra and extinction coefficients of P 700 . , 1972, Biochimica et biophysica acta.

[68]  J. Amesz,et al.  Two Photochemical Systems in Photosynthesis , 1961, Nature.

[69]  Laurens Mets,et al.  Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size , 2002 .

[70]  J. Benemann,et al.  Maximizing photosynthetic efficiencies and hydrogen production in microalga cultures , 2001 .

[71]  I. Gómez,et al.  Biomass, Energy Contents and Major Organic Compounds in the Brown Alga Lessonia nigrescens (Laminariales, Phaeophyceae) from Mehuín, South Chile , 1996 .

[72]  A. Melis Excitation Energy Transfer: Functional and Dynamic Aspects of Lhc (cab) Proteins , 1996 .

[73]  J. Kirk,et al.  Light and Photosynthesis in Aquatic Ecosystems , 1995 .

[74]  A. Melis,et al.  Thylakoid Membrane Development and Differentiation: Assembly of the Chlorophyll a–b Light-Harvesting Complex and Evidence for the Origin of Mr=19, 17.5 and 13.4 kDa Proteins , 1994 .

[75]  R. Vazquez-Duhalt Effet de la lumière sur l'accumulation de lipides neutres et la composition de la biomasse chez l'algue Botryococcus sudeticus (Chlorophyceae) , 1991 .

[76]  A. Ben‐Amotz,et al.  The biotechnology of cultivating the halotolerant algaDunaliella , 1990 .

[77]  P. Falkowski,et al.  Changes in the abundance of individual apoproteins of light-harvesting chlorophyll ab-protein complexes of Photosystem I and II with growth irradiance in the marine chlorophyte Dunaliella tertiolecta , 1988 .

[78]  Stephen B. Powles,et al.  Photoinhibition of Photosynthesis Induced by Visible Light , 1984 .

[79]  A. Ben‐Amotz,et al.  8 – Glycerol Production in the Alga Dunaliella , 1980 .

[80]  San Pietro,et al.  Biochemical and photosynthetic aspects of energy production , 1980 .

[81]  S. Aaronson,et al.  Potential of large-scale algal culture for biomass and lipid production in arid lands , 1978 .

[82]  John S. Burlew,et al.  Algal culture from laboratory to pilot plant. , 1953 .