Intermediate Repeats Confer Risk for Corticobasal Degeneration and Increase C 9 orf 72 Expression

1 Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA 2 Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA 3 Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA 4 Reta Lila Weston Research Laboratories and Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK 5 Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA 6 Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

[1]  F. Lamari,et al.  New Antibody-Free Mass Spectrometry-Based Quantification Reveals That C9ORF72 Long Protein Isoform Is Reduced in the Frontal Cortex of Hexanucleotide-Repeat Expansion Carriers , 2018, Front. Neurosci..

[2]  M. Oulad-Abdelghani,et al.  Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers , 2018, Acta Neuropathologica Communications.

[3]  Michael J. Cowan,et al.  Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons , 2018, Nature Medicine.

[4]  J. Trojanowski,et al.  Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain , 2017, The Journal of Neuroscience.

[5]  P. Gleeson,et al.  C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking , 2017, Human molecular genetics.

[6]  M. Turner,et al.  MN11 C9ORF72 and RAB7L1 regulate vesicle traffi cking in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia , 2017, Neuromuscular Disorders.

[7]  L. Zon,et al.  Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease , 2016, Science Translational Medicine.

[8]  A. Whitworth,et al.  The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy , 2016, The EMBO journal.

[9]  D. Borchelt,et al.  C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD , 2016, Neuron.

[10]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[11]  C. Broeckhoven,et al.  The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter , 2015, Molecular Psychiatry.

[12]  Murray Grossman,et al.  Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy , 2015, Nature Communications.

[13]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits , 2015, Science.

[14]  J. Trojanowski,et al.  Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration , 2015, Acta Neuropathologica.

[15]  D. Maraganore,et al.  Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease , 2014, Neurology.

[16]  Nigel J. Cairns,et al.  Proteopathic tau seeding predicts tauopathy in vivo , 2014, Proceedings of the National Academy of Sciences.

[17]  H. Morris,et al.  Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion , 2014, Neurobiology of Aging.

[18]  D. Irwin,et al.  C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD , 2014, Acta Neuropathologica.

[19]  T. Montine,et al.  Absence of C9ORF72 expanded or intermediate repeats in autopsy‐confirmed Parkinson's disease , 2014, Movement disorders : official journal of the Movement Disorder Society.

[20]  J. Ule,et al.  Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic , 2013, Cell reports.

[21]  L. Petrucelli,et al.  Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood , 2013, Acta Neuropathologica.

[22]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[23]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[24]  L. Petrucelli,et al.  Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study , 2013, The Lancet Neurology.

[25]  K. Xia,et al.  C9orf72 mutation is rare in Alzheimer's disease, Parkinson's disease, and essential tremor in China , 2013, Front. Cell. Neurosci..

[26]  Juan I. Young,et al.  C9ORF72 Intermediate Repeat Copies Are a Significant Risk Factor for Parkinson Disease , 2013, Annals of human genetics.

[27]  E. Rogaeva,et al.  Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. , 2013, American journal of human genetics.

[28]  C. Cruchaga,et al.  Parkinson disease is not associated with C9ORF72 repeat expansions , 2013, Neurobiology of Aging.

[29]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[30]  B. Traynor,et al.  Screening for C9orf72 repeat expansions in parkinsonian syndromes , 2013, Neurobiology of Aging.

[31]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[32]  E. Haan,et al.  C9ORF72 Repeat Expansion in Australian and Spanish Frontotemporal Dementia Patients , 2013, PloS one.

[33]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[34]  J. Shih,et al.  Analysis of the C9orf72 repeat in Parkinson's disease, essential tremor and restless legs syndrome. , 2013, Parkinsonism & related disorders.

[35]  F. Pasquier,et al.  C9orf72 repeat expansions are a rare genetic cause of parkinsonism. , 2013, Brain : a journal of neurology.

[36]  Mark Hallett,et al.  Criteria for the diagnosis of corticobasal degeneration , 2013, Neurology.

[37]  P. Andersen,et al.  No GGGGCC-hexanucleotide repeat expansion in C9ORF72 in parkinsonism patients in Sweden , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[38]  P. S. St George-Hyslop,et al.  Investigation of c9orf72 in 4 neurodegenerative disorders. , 2012, Archives of neurology.

[39]  F. Jessen,et al.  A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats , 2012, Human mutation.

[40]  F. J. Livesey,et al.  Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks , 2012, Nature Protocols.

[41]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[42]  D. Neary,et al.  Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. , 2012, Brain : a journal of neurology.

[43]  M. Nalls,et al.  The chromosome 9 ALS and FTD locus is probably derived from a single founder , 2012, Neurobiology of Aging.

[44]  J. Trojanowski,et al.  Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration , 2011, Nature Reviews Neuroscience.

[45]  B. Boeve,et al.  Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. , 2011, Brain : a journal of neurology.

[46]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[47]  Pedagógia,et al.  Cross Sectional Study , 2019 .

[48]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[49]  A. Lees,et al.  Does corticobasal degeneration exist? A clinicopathological re-evaluation. , 2010, Brain : a journal of neurology.

[50]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[51]  Lexin Li,et al.  Elevated FMR1 mRNA in premutation carriers is due to increased transcription. , 2007, RNA.

[52]  S. Sherman,et al.  A study of the distributional characteristics of FMR1 transcript levels in 238 individuals , 2004, Human Genetics.

[53]  P. Lantos,et al.  Office of Rare Diseases Neuropathologic Criteria for Corticobasal Degeneration , 2002, Journal of neuropathology and experimental neurology.

[54]  S. Warren,et al.  Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. , 2001, Human molecular genetics.

[55]  P. Hagerman,et al.  Transcription of the FMR1 gene in individuals with fragile X syndrome. , 2000, American journal of medical genetics.

[56]  R. Petersen,et al.  Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia , 1999, Neurology.

[57]  J. P. Brandel,et al.  Accuracy of the Clinical Diagnosis of Corticobasal Degeneration , 1997, Neurology.

[58]  S. Tsuji,et al.  Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT , 1996, Nature Genetics.

[59]  Ben A. Oostra,et al.  Absence of expression of the FMR-1 gene in fragile X syndrome , 1991, Cell.

[60]  J. Sutcliffe,et al.  Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome , 1991, Cell.

[61]  C. Marks,et al.  A Clinicopathologic Study , 2017 .

[62]  J. A. Maguire,et al.  Generation of human control iPS cell line CHOPWT10 from healthy adult peripheral blood mononuclear cells. , 2016, Stem cell research.

[63]  D. Munoz Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. , 2002, Neurology.