A Low Complexity Lie Group Method on the Stiefel Manifold
暂无分享,去创建一个
[1] Thomas J. Bridges,et al. Computing Lyapunov exponents on a Stiefel manifold , 2001 .
[2] K. Nomizu,et al. Foundations of Differential Geometry, Volume I. , 1965 .
[3] L. Dieci,et al. Computation of a few Lyapunov exponents for continuous and discrete dynamical systems , 1995 .
[4] Antonella Zanna,et al. Generalized Polar Decompositions on Lie Groups with Involutive Automorphisms , 2001, Found. Comput. Math..
[5] Timo Eirola,et al. On Smooth Decompositions of Matrices , 1999, SIAM J. Matrix Anal. Appl..
[6] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[7] Antonella Zanna,et al. Generalized Polar Decompositions for the Approximation of the Matrix Exponential , 2001, SIAM J. Matrix Anal. Appl..
[8] Antonella Zanna,et al. The polar decomposition on Lie groups with involutive automorphisms , 2000 .
[9] Kenth Engø-Monsen,et al. On the construction of geometric integrators in the RKMK class , 2000 .
[10] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[11] H. Munthe-Kaas. High order Runge-Kutta methods on manifolds , 1999 .
[12] R. Russell,et al. On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .
[13] Elena Celledoni,et al. A Class of Low Complexity Intrinsic Schemes for Orthogonal Integration , 2001 .
[14] ELENA CELLEDONI,et al. A Class of Intrinsic Schemes for Orthogonal Integration , 2002, SIAM J. Numer. Anal..