Dynamic texture as foreground and background

Depending on application, temporal texture can be viewed as either foreground or background. We address two related problems: finding regions of dynamic texture in a video and detecting moving targets in a dynamic texture. We propose efficient and fast methods for both cases. The methods can be potentially used in real-time applications of machine vision. First, we show how the optical flow residual can be used to find dynamic texture in video. The algorithm is a practical, real-time simplification of the sophisticated and powerful but time-consuming method (Fazekas et al. in Int J Comput Vis 82:48–63, 2009). We give numerous examples of detecting and segmenting fire, smoke, water and other dynamic textures in real-world videos acquired by static and moving cameras. Then we apply the singular value decomposition (SVD) to a temporal data window in a video to detect targets in dynamic texture via the residual of the largest singular value. For a dynamic background of low-temporal periodicity, such as water, no temporal periodicity analysis is needed. For a highly periodic background such as an escalator, we show that periodicity analysis can improve detection results. Applying the method proposed in Chetverikov and Fazekas (Proceedings of British machine vision conference, vol 1, pp 167–176, 2006), we find the temporal period and use the resonant SVD to detect moving targets against a time-periodic background.

[1]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[2]  A. Enis Çetin,et al.  Wavelet based real-time smoke detection in video , 2005, 2005 13th European Signal Processing Conference.

[3]  Richard I. Hartley,et al.  Novelty Detection in Image Sequences with Dynamic Background , 2004, ECCV Workshop SMVP.

[4]  A. Enis Çetin,et al.  Real-time fire and flame detection in video , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[5]  Joachim Weickert,et al.  Illumination-Robust Variational Optical Flow with Photometric Invariants , 2007, DAGM-Symposium.

[6]  Mohammad Manzur Murshed,et al.  Temporal Texture Characterization: A Review , 2008 .

[7]  William H. Press,et al.  Numerical recipes in C , 2002 .

[8]  Ralph R. Martin,et al.  Adding and Subtracting Eigenspaces , 1999, BMVC.

[9]  Mark J. Huiskes,et al.  DynTex: A comprehensive database of dynamic textures , 2010, Pattern Recognit. Lett..

[10]  T. List,et al.  Comparison of target detection algorithms using adaptive background models , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[11]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[12]  Fatih Porikli,et al.  Human Body Tracking by Adaptive Background Models and Mean-Shift Analysis , 2003 .

[13]  Dmitry Chetverikov,et al.  Dynamic Texture Detection Based on Motion Analysis , 2009, International Journal of Computer Vision.

[14]  A. Enis Çetin,et al.  Computer vision based method for real-time fire and flame detection , 2006, Pattern Recognit. Lett..

[15]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[16]  Ashfaqur Rahman,et al.  Multiple temporal texture detection using feature space mapping , 2007, CIVR '07.

[17]  Dmitry Chetverikov,et al.  Approximation-free running SVD and its application to motion detection , 2010, Pattern Recognit. Lett..

[18]  J. Barondess On excellence. , 1988, The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha.

[19]  Dmitry Chetverikov,et al.  Dynamic Texture Recognition Using Optical Flow Features and Temporal Periodicity , 2007, 2007 International Workshop on Content-Based Multimedia Indexing.

[20]  Dmitry Chetverikov,et al.  On Motion Periodicity of Dynamic Textures , 2006, BMVC.

[21]  J. Weickert,et al.  Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods , 2005 .

[22]  Eric J. Pauwels Multimedia Understanding through Semantics, Computation and Learning , 2005 .

[23]  Ming Gu,et al.  Studies in numerical linear algebra , 1993 .

[24]  Badrinath Roysam,et al.  Image change detection algorithms: a systematic survey , 2005, IEEE Transactions on Image Processing.

[25]  Goutam Saha,et al.  Robust method for periodicity detection and characterization of irregular cyclical series in terms of embedded periodic components , 1999 .

[26]  Nuno Vasconcelos,et al.  Layered Dynamic Textures , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  P. Hall,et al.  On adding and subtracting eigenspaces with EVD and SVD , 1999 .

[28]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[30]  Patrick Bouthemy,et al.  Mixed-State Markov Random Fields for Motion Texture Modeling and Segmentation , 2006, 2006 International Conference on Image Processing.

[31]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[32]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[33]  Daniel Cremers,et al.  Dynamic texture segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[34]  René Vidal,et al.  Segmenting Dynamic Textures with Ising Descriptors, ARX Models and Level Sets , 2006, WDV.

[35]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[36]  Jun Liu,et al.  Spatial Segmentation of Temporal Texture Using Mixture Linear Models , 2006, WDV.

[37]  James Ferryman,et al.  Proceedings of the thirteenth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance , 2009 .

[38]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[39]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[40]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[41]  Dmitry Chetverikov,et al.  A Brief Survey of Dynamic Texture Description and Recognition , 2005, CORES.