Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads.

OBJECTIVE For autologous chondrocyte transplantation (ACT) chondrocytes are expanded in vitro. During expansion these cells may dedifferentiate. This change in phenotype is characterized by a raised expression of type I collagen and a decrease in type II collagen expression. Since high expression of type II collagen is of central importance for the properties of hyaline cartilage, we investigated if the growth factor bone morphogenetic protein-2 (BMP-2) may modulate the chondrogenic phenotype in monolayer cell cultures and in three-dimensional culture systems. DESIGN Chondrocytes from articular knee cartilage of 11 individuals (average age: 39.8 years) with no history of joint disease were isolated and seeded either in monolayer cultures or embedded in alginate beads in presence or absence of human recombinant BMP-2 (hr-BMP-2). Then, cells were harvested and analysis of the chondrogenic phenotype was performed using quantitative RT-PCR, immunocytochemistry and ELISA. RESULTS Addition of BMP-2 to chondrocytes expanded in two-dimensional (2D) cultures during the first subculture (P1) had no effect on mRNA amounts encoding type II collagen and interleukin-1beta (IL-1beta). In contrast, seeding chondrocytes in three-dimensional (3D) alginate cultures raised type II collagen expression significantly and addition of BMP-2 enhanced this effect. CONCLUSIONS We conclude that chondrocytes during expansion for ACT may benefit from BMP-2 activation only when seeded in an appropriate 3D culture system.

[1]  Tom Minas,et al.  Current concepts in the treatment of articular cartilage defects. , 1997, Orthopedics.

[2]  W. Sebald,et al.  Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. , 1996, European journal of biochemistry.

[3]  J. MacLeod,et al.  Phenotypic Stability of Articular Chondrocytes In Vitro: The Effects of Culture Models, Bone Morphogenetic Protein 2, and Serum Supplementation , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[4]  R. Hewick,et al.  Recombinant human bone morphogenetic protein‐2 maintains the articular chondrocyte phenotype in long‐term culture , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[5]  F. Luyten,et al.  Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures. , 1992, The Journal of biological chemistry.

[6]  N. Steimberg,et al.  Dedifferentiated chondrocytes cultured in alginate beads: Restoration of the differentiated phenotype and of the metabolic responses to Interleukin‐1β , 1998 .

[7]  J. Vacanti,et al.  De Novo Cartilage Generation Using Calcium Alginate‐Chondrocyte Constructs , 1996, Plastic and reconstructive surgery.

[8]  C Perka,et al.  Matrix-mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants. , 2000, Journal of biomedical materials research.

[9]  M. Brittberg,et al.  Health economics benefits following autologous chondrocyte transplantation for patients with focal chondral lesions of the knee , 2001, Knee Surgery, Sports Traumatology, Arthroscopy.

[10]  C. L. Murphy,et al.  Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. , 2001, Tissue engineering.

[11]  M. Lotz,et al.  IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. , 1999, Journal of immunology.

[12]  J. Bonaventure,et al.  Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. , 1994, Experimental cell research.

[13]  T. Kirsch,et al.  BMP‐2 antagonists emerge from alterations in the low‐affinity binding epitope for receptor BMPR‐II , 2000, The EMBO journal.

[14]  E. Thonar,et al.  Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. , 1996, The American journal of physiology.

[15]  E. Thonar,et al.  The superficial layer of human articular cartilage is more susceptible to interleukin-1-induced damage than the deeper layers. , 1996, Arthritis and rheumatism.

[16]  Thomas Häupl,et al.  Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. , 2002, Arthritis and rheumatism.

[17]  M. Lotz Cytokines in cartilage injury and repair. , 2001, Clinical orthopaedics and related research.

[18]  D. Grande,et al.  Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair , 1998, Gene Therapy.

[19]  E. Morris,et al.  The Effect of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) on the Healing of Full-Thickness Defects of Articular Cartilage* , 1997, The Journal of bone and joint surgery. American volume.

[20]  E. Thonar,et al.  Synthesis and turnover of proteoglycans by human and bovine adult articular chondrocytes cultured in alginate beads. , 1992, Matrix.

[21]  G. Balian,et al.  Marrow stromal cells embedded in alginate for repair of osteochondral defects. , 2000, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[22]  F. Luyten,et al.  Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. , 2001, Arthritis and rheumatism.

[23]  G. Bentley,et al.  A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. , 2003, The Journal of bone and joint surgery. British volume.

[24]  D K MacCallum,et al.  Culture and growth characteristics of chondrocytes encapsulated in alginate beads. , 1989, Connective tissue research.

[25]  E B Hunziker,et al.  Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. , 2002, Osteoarthritis and cartilage.

[26]  C. Ohlsson,et al.  Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. , 1994, The New England journal of medicine.

[27]  H. Inoue,et al.  Bone morphogenetic proteins (BMP‐2 and BMP‐3) promote growth and expression of the differentiated phenotype of rabbit chondrocytes and osteoblastic MC3T3‐E1 cells in vitro , 1991, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.