IN THE MARINE ENVIRONMENT

[1]  M. Polz,et al.  Extensive Variation in Intracellular Symbiont Community Composition among Members of a Single Population of the Wood-Boring Bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae) , 2006, Applied and Environmental Microbiology.

[2]  B. Volcani,et al.  Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis , 1989 .

[3]  C. Schleper,et al.  Genomic studies of uncultivated archaea , 2005, Nature Reviews Microbiology.

[4]  F. Morel,et al.  Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes , 1992 .

[5]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[6]  J. Hacker,et al.  Symbiosis and Pathogenesis: Evolution of the Microbe-Host Interaction , 2000, Naturwissenschaften.

[7]  D. Caron,et al.  Role of protozoan grazing in relieving iron limitation of phytoplankton , 1996, Nature.

[8]  D. Sedlak,et al.  Iron reduction by photoproduced superoxide in seawater , 1995 .

[9]  K. Furuya,et al.  Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean , 2005 .

[10]  L. Aluwihare,et al.  Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Brezonik,et al.  Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. , 1981, Environmental science & technology.

[12]  U. Passow Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean , 1994 .

[13]  I. Ciglenečki,et al.  Electrochemical study of sulfur species in seawater and marine phytoplankton cultures , 1996 .

[14]  Tracy A. Villareal,et al.  Nitrogen-fixation by the cyanobacterial symbiont of the diatom genus Hemiaulus , 1991 .

[15]  Christina M. Preston,et al.  Genomic Analysis Reveals Chromosomal Variation in Natural Populations of the Uncultured Psychrophilic ArchaeonCenarchaeum symbiosum , 1998, Journal of bacteriology.

[16]  Cindy Lee,et al.  Copper complexing properties of melanoidins and marine humic material. , 2006, The Science of the total environment.

[17]  Bess B. Ward,et al.  Sponge-mediated nitrification in tropical benthic communities , 1997 .

[18]  Villafañe,et al.  The occurrence of the symbiont richelia in rhizosolenia and hemiaulus in the north pacific , 1995 .

[19]  A. Neori,et al.  Symbiotic associations among the microplankton in oligotrophic marine environments, with special reference to the Gulf of Aqaba, Red Sea , 1992 .

[20]  T. Waite,et al.  Reduction of organically complexed ferric iron by superoxide in a simulated natural water. , 2005, Environmental science & technology.

[21]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .

[22]  Robert F. Chen,et al.  A major biopolymeric component to dissolved organic carbon in surface sea water , 1997, Nature.

[23]  R. D. Turner,et al.  A Cellulolytic Nitrogen-Fixing Bacterium Cultured from the Gland of Deshayes in Shipworms (Bivalvia: Teredinidae) , 1983, Science.

[24]  A. Ross,et al.  Characterization of copper-complexing ligands in seawater using immobilized copper(II)-ion affinity chromatography and electrospray ionization mass spectrometry , 2003 .

[25]  H. Irving Separation and preconcentration , 1973 .

[26]  P. Croot,et al.  Determination of Iron Speciation by Cathodic Stripping Voltammetry in Seawater Using the Competing Ligand 2‐(2‐Thiazolylazo)‐p‐cresol (TAC) , 2000 .

[27]  Markus Huettel,et al.  Coral mucus functions as an energy carrier and particle trap in the reef ecosystem , 2004, Nature.

[28]  D. Lean,et al.  Hydrogen peroxide formation: The interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43–75°N gradient , 1996 .

[29]  T. Waite,et al.  Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter. , 2002, Environmental science & technology.

[30]  Hans-Peter Klenk,et al.  Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. , 2005, Environmental microbiology.

[31]  P. Hatcher,et al.  Bulk Chemical Characteristics of Dissolved Organic Matter in the Ocean , 1992, Science.

[32]  S. Myklestad,et al.  A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater , 1997 .

[33]  F. Millero,et al.  Oxidation of iron (II) nanomolar with H2O2 in seawater , 2005 .

[34]  Thomas L. Theis,et al.  Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation , 1974 .

[35]  S. Toze,et al.  Inter-generational transmission of microbial symbionts in the marine sponge Chondrilla australiensis (Demospongiae) , 2005 .

[36]  E. Carpenter,et al.  Nitrogen Fixation in Marine Shipworms , 1975, Science.

[37]  P. Worsfold,et al.  Shipboard determination of hydrogen peroxide in the western Mediterranean sea using flow injection with chemiluminescence detection , 1998 .

[38]  E. Venrick The distribution and significance of Richelia intracellularis Schmidt in the North Pacific Central Gyre1 , 1974 .

[39]  D. King,et al.  Photochemical redox cycling of iron in coastal seawater , 1995 .

[40]  M. Wells,et al.  The distribution of colloids in the North Atlantic and Southern Oceans , 1994 .

[41]  A. Roychoudhury,et al.  The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters , 2000 .

[42]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[43]  Yoshihiro Suzuki,et al.  Photo-reduction of Fe(III) by dissolved organic substances and existence of Fe(II) in seawater during spring blooms , 1992 .

[44]  K. Bruland,et al.  Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method , 1995 .

[45]  M. Scoullos,et al.  Partitioning and distribution of dissolved copper, cadmium and organic matter in Mediterranean marine coastal areas: The case of a mucilage event , 2006 .

[46]  K. Coale,et al.  Effects of iron, manganese, copper, and zinc enrichments on productivity and biomass in the subarctic Pacific , 1991 .

[47]  J. Vacelet,et al.  ELECTRON MICROSCOPE STUDY OF THE ASSOCIATION BETWEEN SOME SPONGES AND BACTERIA , 1977 .

[48]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Carpenter,et al.  Marine Cyanobacterial Symbioses , 2022, Biology and Environment: Proceedings of the Royal Irish Academy.

[50]  K. Bruland Complexation of zinc by natural organic ligands in the central North Pacific , 1989 .

[51]  W. Sunda,et al.  Effect of pH, light, and temperature on Fe–EDTA chelation and Fe hydrolysis in seawater , 2003 .

[52]  A. Gordon,et al.  Seasonal survey of copper-complexing ligands and thiol compounds in a heavily utilized, urban estuary: Elizabeth River, Virginia , 2007 .

[53]  S. B. Moran,et al.  Thorium speciation in seawater , 2006 .

[54]  B. Ćosović,et al.  Adsorption of Carrageenans on Mercury Surface in Sodium Chloride Solution and Seawater , 1998 .

[55]  K. Johnson,et al.  Iron photochemistry in seawater from the equatorial Pacific , 1994 .

[56]  F. Morel,et al.  Photoreductive dissolution of colloidal iron oxides in natural waters. , 1984, Environmental science & technology.

[57]  P. Croot,et al.  Identifying the processes controlling the distribution of H2O2 in surface waters along a meridional transect in the eastern Atlantic , 2008 .

[58]  W. Grzybowski Comparison between stability constants of cadmium and lead complexes with humic substances of different molecular weight isolated from Baltic Sea water , 2000 .

[59]  P. Croot,et al.  Continuous shipboard determination of Fe(II) in polar waters using flow injection analysis with chemiluminescence detection , 2002 .

[60]  Chin-Chang Hung,et al.  Importance of acid polysaccharides for 234Th complexation to marine organic matter , 2002 .

[61]  E. Delong,et al.  Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum , 2006, Proceedings of the National Academy of Sciences.

[62]  S. Jacquet,et al.  Biological factors regulating the chemical speciation of Cu, Zn, and Mn under different nutrient regimes in a marine mesocosm experiment , 2003 .

[63]  W. J. Cooper,et al.  Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. , 1988, Environmental science & technology.

[64]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[65]  R. Zika,et al.  Hydrogen peroxide lifetimes in south Florida coastal and offshore waters , 1997 .

[66]  F. Millero,et al.  The oxidation kinetics of Fe(II) in seawater , 1987 .

[67]  C. V. D. Berg Evidence for organic complexation of iron in seawater , 1995 .

[68]  S. Boo,et al.  Endonuclear bacteria in Euglena hemichromata (Euglenophyceae): a proposed pathway to endonucleobiosis , 2003 .

[69]  Steven W. Taylor,et al.  Polarographic and Spectrophotometric Investigation of Iron(III) Complexation to 3,4-Dihydroxyphenylalanine-Containing Peptides and Proteins from Mytilus edulis , 1994 .

[70]  U. Passow Switching perspectives: Do mineral fluxes determine particulate organic carbon fluxes or vice versa? , 2004 .

[71]  J. Wulff Rapid diversity and abundance decline in a Caribbean coral reef sponge community , 2006 .

[72]  S. Toze,et al.  The Biogeography and Phylogeny of Unicellular Cyanobacterial Symbionts in Sponges from Australia and the Mediterranean , 2004, Microbial Ecology.

[73]  R. Haselkorn,et al.  Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. , 1991, Genes & development.

[74]  U. Passow Transparent exopolymer particles (TEP) in aquatic environments , 2002 .

[75]  R. Bidigare,et al.  Temporal variations in diatom abundance and downward vertical flux in the oligotrophic North Pacific gyre , 1999 .

[76]  P. Santschi,et al.  Sorption irreversibility and coagulation behavior of 234Th with marine organic matter , 2001 .

[77]  S. Bertilsson,et al.  Iron enrichment and photoreduction of iron under UV and PAR in the presence of hydroxycarboxylic acid: implications for phytoplankton growth in the Southern Ocean , 2004 .

[78]  D. Hutchins,et al.  Interactive influences of bioactive trace metals on biological production in oceanic waters , 1991 .

[79]  U. Passow,et al.  The role of surface‐active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater , 1998 .

[80]  E. Carpenter,et al.  Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. , 1999, Environmental microbiology.

[81]  Christoph Völker,et al.  Physical limits on iron uptake mediated by siderophores or surface reductases , 1999 .

[82]  Y. Yoo,et al.  Characteristics of lead adsorption byUndaria pinnatifida , 1995, Biotechnology Letters.

[83]  G. Karsten Das Indische Phytoplankton , 1907 .

[84]  I. Koike,et al.  Carbon and nitrogen budgets of two Ascidians and their symbiont, Prochloron, in a tropical seagrass meadow , 1993 .

[85]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[86]  K. Bruland,et al.  Copper speciation in San Francisco Bay: A novel approach using multiple analytical windows , 2005 .

[87]  M. Borowitzka,et al.  Population dynamics of an association between a coral reef sponge and a red macroalga , 2000 .

[88]  S. Vogel Current-induced flow through living sponges in nature. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[89]  A. Gordon,et al.  Dissolved copper-complexing ligands in cultures of marine bacteria and estuarine water , 2000 .

[90]  W. Smith,et al.  STUDIES ON TRANSPARENT EXOPOLYMER PARTICLES (TEP) PRODUCED IN THE ROSS SEA (ANTARCTICA) AND BY PHAEOCYSTIS ANTARCTICA (PRYMNESIOPHYCEAE) 1 , 1997 .

[91]  H. Dam,et al.  The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm , 1995 .

[92]  C. Wilkinson Net Primary Productivity in Coral Reef Sponges , 1983, Science.

[93]  T. Waite,et al.  Superoxide-mediated reduction of ferric iron in natural aquatic systems , 2006 .

[94]  P. Croot,et al.  Organic complexation of iron in the Southern Ocean , 2001 .

[95]  A. Butler,et al.  Competition among marine phytoplankton for different chelated iron species , 1999, Nature.

[96]  L. M. Laglera,et al.  Copper complexation by thiol compounds in estuarine waters , 2003 .

[97]  R. Geider,et al.  The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea , 1994, Photosynthesis Research.

[98]  P. Lockhart,et al.  Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. , 2004, Molecular biology and evolution.

[99]  A. Douglas,et al.  Host benefit and the evolution of specialization in symbiosis , 1998, Heredity.

[100]  Peter E. Nielsen,et al.  Reduction and Oxidation of Peptide Nucleic Acid and DNA at Mercury and Carbon Electrodes , 1999 .

[101]  A. Shiller,et al.  The variation of hydrogen peroxide in rainwater over the South and Central Atlantic Ocean , 2000 .

[102]  D. Faulkner,et al.  Vertical Transmission of Diverse Microbes in the Tropical Sponge Corticium sp , 2006, Applied and Environmental Microbiology.

[103]  A. Davis Novel major archaebacterial group from marine plankton , 1992, Nature.

[104]  J. Hayes,et al.  Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific Δ 14 C analysis , 2001 .

[105]  N. M. Price,et al.  Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean , 1999 .

[106]  M. Wells,et al.  Colloid aggregation in seawater , 1993 .

[107]  T. Waite,et al.  Superoxide-mediated reduction of organically complexed iron(III): Impact of pH and competing cations (Ca2+) , 2007 .

[108]  Edward J Carpenter,et al.  INTRACELLULAR CYANOBACTERIAL SYMBIONTS IN THE MARINE DIATOM CLIMACODIUM FRAUENFELDIANUM (BACILLARIOPHYCEAE) , 2000, Journal of phycology.

[109]  R. Bak,et al.  Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles) , 2004, Coral Reefs.

[110]  M. Plavšić Electroanalytical Techniques Applied for Studying the Interaction of Organic Matter and Particles with Metal Ions in Natural Waters , 2003 .

[111]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[112]  T. Waite,et al.  Superoxide mediated reduction of organically complexed iron(III): comparison of non-dissociative and dissociative reduction pathways. , 2007, Environmental science & technology.

[113]  A. Butler Marine Siderophores and Microbial Iron Mobilization , 2005, Biometals.

[114]  F. Millero,et al.  Rates and Mechanism of Fe(II) Oxidation at Nanomolar Total Iron Concentrations. , 1995, Environmental science & technology.

[115]  U. Passow Formation of transparent exopolymer particles, TEP, from dissolved precursor material , 2000 .

[116]  E. Goldberg,et al.  Rare‐Earth distributions in the marine environment , 1963 .

[117]  T. Waite,et al.  Superoxide-mediated dissolution of amorphous ferric oxyhydroxide in seawater. , 2006, Environmental science & technology.

[118]  D. Karl,et al.  Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA , 1999 .

[119]  T. A. Villareal,et al.  Laboratory Culture and Preliminary Characterization of the Nitrogen-Fixing Rhizosolenia-Richelia Symbiosis , 1990 .

[120]  C. M. G. van den Berg,et al.  Copper‐induced release of complexing ligands similar to thiols by Emiliania huxleyi in seawater cultures , 1999 .

[121]  X. Álvarez‐Salgado,et al.  Contrasting complexing capacity of dissolved organic matter produced during the onset, development and decay of a simulated bloom of the marine diatom Skeletonema costatum , 2007 .

[122]  R. Benner Chapter 3 – Chemical Composition and Reactivity , 2002 .

[123]  M. W. Taylor,et al.  Marine sponges as microbial fermenters. , 2006, FEMS microbiology ecology.

[124]  A. Shiller,et al.  The distribution of hydrogen peroxide in the southern and central Atlantic ocean , 2001 .

[125]  Alice L. Alldredge,et al.  A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP) , 1995 .

[126]  M. Shafer,et al.  Response of nonprotein thiols to copper stress and extracellular release of glutathione in the diatom Thalassiosira weissflogii , 2005 .

[127]  P. Croot,et al.  Uptake of 64Cu−Oxine by Marine Phytoplankton , 1999 .

[128]  J. Zehr,et al.  Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. , 2006, Environmental microbiology.

[129]  L. Mayer,et al.  The phttoconversion of colloidal iron oxyhydroxides in seawater , 1991 .

[130]  B. Ćosović,et al.  Direct determination of surface active substances in natural waters , 1987 .

[131]  S. Saitoh,et al.  Variation in iron(III) solubility and iron concentration in the northwestern North Pacific Ocean , 2002 .

[132]  F. Thomas,et al.  The effect of water exchange on bacterioplankton depletion and inorganic nutrient dynamics in coral reef cavities , 2006, Coral Reefs.

[133]  D. Sedlak,et al.  The role of copper and oxalate in the redox cycling of iron in atmospheric waters , 1993 .

[134]  K. Bruland,et al.  Direct determination of dissolved cobalt and nickel in seawater by differential pulse cathodic stripping voltammetry preceded by adsorptive collection of cyclohexane-1,2-dione dioxime complexes , 1988 .

[135]  F. Leganés,et al.  Two mutations that block heterocyst differentiation have different effects on akinete differentiation in Nostoc ellipsosporum , 1994, Molecular microbiology.

[136]  I. Obernosterer Photochemical transformations of dissolved organic matter and its subsequent utilization by marine bacterioplankton , 2000 .

[137]  W. Stumm Chemical processes in lakes , 1985 .

[138]  Nicolas Gruber,et al.  Spatial coupling of nitrogen inputs and losses in the ocean , 2007, Nature.

[139]  L. Aluwihare,et al.  A comparison of the chemical characteristics of oceanic DOM and extracellular DOM produced by marine algae , 1999 .

[140]  C. M. Short,et al.  Temporal Patterns of Nitrogenase Gene (nifH) Expression in the Oligotrophic North Pacific Ocean , 2005, Applied and Environmental Microbiology.

[141]  K. Bruland,et al.  Collection and detection of natural iron-binding ligands from seawater , 2001 .

[142]  Marc Strous,et al.  Archaeal nitrification in the ocean , 2006, Proceedings of the National Academy of Sciences.

[143]  A. Shiller,et al.  Determination of Subnanomolar Levels of Hydrogen Peroxide in Seawater by Reagent-Injection Chemiluminescence Detection , 1999 .

[144]  E. Carpenter,et al.  REVERSE TRANSCRIPTION PCR AMPLIFICATION OF CYANOBACTERIAL SYMBIONT 16S RRNA SEQUENCES FROM SINGLE NON‐PHOTOSYNTHETIC EUKARYOTIC MARINE PLANKTONIC HOST CELLS 1 , 2006 .

[145]  K. Mopper,et al.  Photochemical production of hydrogen peroxide in Antarctic Waters , 2000 .

[146]  C. Duarte,et al.  Krill as a central node for iron cycling in the Southern Ocean , 2007 .

[147]  S. Myklestad Release of extracellular products by phytoplankton with special emphasis on polysaccharides , 1995 .

[148]  C. Wilkinson,et al.  Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta on Davies Reef, Great Barrier Reef , 1997 .

[149]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[150]  O. Donard,et al.  The photolysis of colloidal iron in the oceans , 1991, Nature.

[151]  J. A. Hellebust,et al.  EXCRETION OF SOME ORGANIC COMPOUNDS BY MARINE PHYTOPLANKTON1 , 1965 .

[152]  C. M. G. van den Berg,et al.  Wavelength dependence of the photochemical reduction of iron in arctic seawater. , 2007, Environmental science & technology.

[153]  L. M. Laglera,et al.  Photochemical oxidation of thiols and copper complexing ligands in estuarine waters , 2006 .

[154]  T. A. Villareal,et al.  Widespread occurrence of the Hemiaulus-cyanobacterial symbiosis in the southwest north Atlantic Ocean , 1994 .

[155]  F. Azam,et al.  MICROAUTORADIOGRAPHIC STUDIES OF THE MARINE PHYCOBIONTS RHIZOSOLENIA AND RICHELIA 1 , 1974 .

[156]  C. V. D. Berg,et al.  Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Theory , 1982 .

[157]  B. Gašparović,et al.  Organic matter characterization in Barents Sea and eastern Arctic Ocean during summer , 2007 .

[158]  F. Millero,et al.  The oxidation of Fe(II) with H2O2 in seawater , 1989 .

[159]  W. Stewart Algal physiology and biochemistry , 1975 .

[160]  M. Branica,et al.  Determination of the apparent copper complexing capacity of seawater by anodic stripping voltammetry , 1982 .

[161]  K. Furic,et al.  The role of reduced sulfur species in the coalescence of polysaccharides in the Adriatic Sea , 2000 .

[162]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[163]  T. Waite,et al.  Effect of dissolved natural organic matter on the kinetics of ferrous iron oxygenation in seawater. , 2003, Environmental science & technology.

[164]  M. Ellwood Zinc and cadmium speciation in subantarctic waters east of New Zealand , 2004 .

[165]  B. Bergman,et al.  Intracellular cyanobiont Richelia intracellularis: ultrastructure and immuno-localisation of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase , 1995 .

[166]  H. Paerl N2 fixation (nitrogenase activity) attributable to a specific Prochloron (Prochlorophyta)-ascidian association in Palau, Micronesia , 1984 .

[167]  D. Beaudoin,et al.  Coexistence of Multiple Proteobacterial Endosymbionts in the Gills of the Wood-Boring Bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae) , 2002, Applied and Environmental Microbiology.

[168]  F. Millero,et al.  The effect of organic compounds in the oxidation kinetics of Fe(II) , 2000 .

[169]  W. Sunda,et al.  Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications , 1995 .

[170]  L. Proctor,et al.  Molecular evidence for zooplankton-associated nitrogen-fixing anaerobes based on amplification of the nifH gene , 1999 .

[171]  S. Wilhelm,et al.  Iron‐limited growth of cyanobacteria: Multiple siderophore production is a common response , 1994 .

[172]  L. Balistrieri,et al.  Organic carbon to 234Th ratios of marine organic matter , 2006 .

[173]  D. B. Chadwick,et al.  Spatial and temporal variations in copper speciation in San Diego Bay , 2004 .

[174]  Kenneth S. Johnson,et al.  Marine Chemistry Discussion Paper What controls dissolved iron concentrations in the world ocean , 1997 .

[175]  D. Hinrichsen Coral reefs in crisis An overview of these vanishing ecosystems, the problems that plague them, and the means for saving them , 1997 .

[176]  J. Nishioka,et al.  Spatial and temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment , 2005 .

[177]  T. J. Boyd,et al.  Photochemical production of hydrogen peroxide and methylhydroperoxide in coastal waters , 2005 .

[178]  K. Timmermans,et al.  Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean , 1998 .

[179]  F. Millero,et al.  The oxidation of Fe(II) in NaCl–HCO3− and seawater solutions in the presence of phthalate and salicylate ions: a kinetic model , 2004 .

[180]  I. Ruzic THEORETICAL ASPECTS OF THE DIRECT TITRATION OF NATURAL WATERS AND ITS INFORMATION YIELD FOR TRACE METAL SPECIATION , 1982 .

[181]  E. Delong,et al.  A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[182]  M. Wagner,et al.  Molecular Evidence for a Uniform Microbial Community in Sponges from Different Oceans , 2002, Applied and Environmental Microbiology.

[183]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[184]  C. Dupont,et al.  Effects of copper, cadmium, and zinc on the production and exudation of thiols by Emiliania huxleyi , 2005 .

[185]  L. Wald,et al.  The method Heliosat-2 for deriving shortwave solar radiation from satellite images , 2004 .

[186]  T. A. Villareal,et al.  Division cycles in the nitrogen-fixing Rhizosolenia (Bacillariophyceae)-Richelia (Nostocaceae) symbiosis , 1989 .

[187]  David L. Williams,et al.  Pharmacokinetics of fungal (1-3)-beta-D-glucans following intravenous administration in rats. , 2004, International immunopharmacology.

[188]  L. Gerringa,et al.  Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater , 2006 .

[189]  F. Millero,et al.  Competition Between O2 and H2O2 in the Oxidation of Fe(II) in Natural Waters , 2006 .

[190]  R. Zepp,et al.  Rates of direct photolysis in aquatic environment , 1977 .

[191]  Sammy M Ray,et al.  Metal partitioning between colloidal and dissolved phases and its relation with bioavailability to American oysters. , 2002, Marine environmental research.

[192]  T. Waite,et al.  Role of superoxide in the photochemical reduction of iron in seawater , 2006 .

[193]  L. Gerringa,et al.  The influence of solar ultraviolet radiation on the photochemical production of H , 2004 .

[194]  O. Holm‐Hansen,et al.  Nitrogen fixation in the North Pacific Ocean , 1974 .

[195]  F. Morel,et al.  The Biogeochemical Cycles of Trace Metals in the Oceans , 2003, Science.

[196]  P. Santschi,et al.  Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase , 1999 .

[197]  K. Bruland,et al.  The complexation of `dissolved' Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI , 1998 .

[198]  P. Worsfold,et al.  Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean , 2003 .

[199]  C. Hung,et al.  234Th scavenging and its relationship to acid polysaccharide abundance in the Gulf of Mexico , 2002 .

[200]  The "Presodium" Hydrogen Evolution at the Dropping Mercury Electrode Catalysed by Simple Cysteine Peptides , 2001 .

[201]  D. Hepperle,et al.  Petalomonas sphagnophila (Euglenophyta) and its endocytobiotic cyanobacteria: a unique form of symbiosis , 2002 .

[202]  R. Hill,et al.  Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile , 2001, Applied and Environmental Microbiology.

[203]  D. Hutchins,et al.  Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime , 1998, Nature.

[204]  T. Waite,et al.  Kinetics of iron complexation by dissolved natural organic matter in coastal waters , 2003 .

[205]  B. Ćosović,et al.  Interaction of cadmium and copper with surface-active organic matter and complexing ligands released by marine phytoplankton , 1989 .

[206]  M. Gledhill The determination of heme b in marine phyto- and bacterioplankton , 2007 .

[207]  E. Carpenter,et al.  Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean , 1999 .

[208]  A. Hill,et al.  Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida) , 2006 .

[209]  David L. Kirchman,et al.  The oceanic gel phase: a bridge in the DOM-POM continuum , 2004 .