Canonical labeling of graphs

We announce an algebraic approach to the problem of assigning <italic>canonical forms</italic> to graphs. We compute canonical forms and the associated canonical labelings (or renumberings) in polynomial time for graphs of bounded valence, in moderately exponential, exp(n<supscrpt>½ + &ogr;(1)</supscrpt>),time for general graphs, in subexponential, n<supscrpt>log n</supscrpt>, time for tournaments and for 2-(&ngr;,&kgr;,λ) block designs with &kgr;,λ bounded and n<supscrpt>log log n</supscrpt> time for λ-planes (symmetric designs) with λ bounded. We prove some related problems NP-hard and indicate some open problems.

[1]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[2]  Andreas Blass,et al.  Equivalence Relations, Invariants, and Normal Forms , 1983, SIAM J. Comput..

[3]  Rudolf Mathon,et al.  A Note on the Graph Isomorphism counting Problem , 1979, Inf. Process. Lett..

[4]  László Babai,et al.  Moderately Exponential Bound for Graph Isomorphism , 1981, FCT.

[5]  L. Babai On the Order of Uniprimitive Permutation Groups , 1981 .

[6]  Zvi Galil,et al.  An O(n3 log n) deterministic and an O (n 3) probabilistic isomorphism test for trivalent graphs , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[7]  B. Weisfeiler On construction and identification of graphs , 1976 .

[8]  Charles J. Colbourn,et al.  The Complexity of Combinatorial Isomorphism Problems , 1980 .

[9]  Gary L. Miller Isomorphism of Graphs Which are Pairwise k-separable , 1983, Inf. Control..

[10]  John E. Hopcroft,et al.  Polynomial-time algorithms for permutation groups , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[11]  David M. Mount,et al.  Isomorphism of graphs with bounded eigenvalue multiplicity , 1982, STOC '82.

[12]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[13]  Peter J. Cameron,et al.  On the orders of primitive groups with restricted nonabelian composition factors , 1982 .

[14]  Gary L. Miller,et al.  On the nlog n isomorphism technique (A Preliminary Report) , 1978, STOC.

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[17]  László Babai,et al.  On the order of doubly transitive permutation groups , 1982 .

[18]  Gary L. Miller,et al.  Graph isomorphism, general remarks , 1977, STOC '77.

[19]  Z. Hedrlín,et al.  On full embeddings of categories of algebras , 1966 .

[20]  P. Pálfy,et al.  A polynomial bound for the orders of primitive solvable groups , 1982 .

[21]  P. Cameron FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .

[22]  Anna Lubiw,et al.  Some NP-Complete Problems Similar to Graph Isomorphism , 1981, SIAM J. Comput..

[23]  László Babai,et al.  On the Complexity of Canonical Labeling of Strongly Regular Graphs , 1980, SIAM J. Comput..