Optimized turbo codes for delay constrained applications

We present the results of the optimization applied to the design of interleavers for rate-1/n parallel concatenated convolutional codes (PCCC) tailored to specific recursive systematic convolutional (RSC) constituent codes. The emphasis is on low-latency codes associated with interleavers of block length less than or equal to 160. The error floors of the optimized codes are significantly lower than those associated with the use of random interleavers. The distance spectra of the equivalent block codes resulting from trellis termination applied to PCCC are evaluated and used to obtain asymptotic bit error rate (BER) curves for the optimized codes.

[1]  D. Costello,et al.  New classes of algebraic interleavers for turbo-codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[2]  Daniel J. Costello,et al.  A distance spectrum interpretation of turbo codes , 1996, IEEE Trans. Inf. Theory.

[3]  Roberto Garello,et al.  Interleaver properties and their applications to the trellis complexity analysis of turbo codes , 2001, IEEE Trans. Commun..

[4]  H. Herzberg Multilevel turbo coding with a short latency , 1997, Proceedings of IEEE International Symposium on Information Theory.

[5]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[6]  Patrick Robertson,et al.  Illuminating the structure of code and decoder of parallel concatenated recursive systematic (turbo) codes , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[7]  Fred Daneshgaran,et al.  An Efficient Algorithm for Obtaining the Distance Spectrum of Turbo Codes , 1997 .

[8]  D. T. Chi A new block helical interleaver , 1992, MILCOM 92 Conference Record.

[9]  S. V. Maric Class of algebraically constructed permutations for use in pseudorandom interleavers , 1994 .

[10]  John L. Ramsey Realization of optimum interleavers , 1970, IEEE Trans. Inf. Theory.

[11]  Dariush Divsalar,et al.  Turbo codes for PCS applications , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[12]  Fred Daneshgaran,et al.  Permutation fixed points with application to estimation of minimum distance of turbo codes , 2000, IEEE Trans. Inf. Theory.

[13]  M. Hall The Theory Of Groups , 1959 .

[14]  C. Heegard,et al.  Interleaver design methods for turbo codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[15]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[16]  S. S. Pietrobon,et al.  Terminating the trellis of turbo-codes in the same state , 1995 .

[17]  Jakob Dahl Andersen,et al.  Interleaver Design for Turbo Coding , 1997 .

[18]  S. S. Pietrobon,et al.  Interleaver design for turbo codes , 1994 .

[19]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[20]  Roberto Garello,et al.  A search for good convolutional codes to be used in the construction of turbo codes , 1998, IEEE Trans. Commun..

[21]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[22]  Sergio Benedetto,et al.  Design of parallel concatenated convolutional codes , 1996, IEEE Trans. Commun..

[23]  Fred Daneshgaran,et al.  Design of interleavers for turbo codes: Iterative interleaver growth algorithms of polynomial complexity , 1999, IEEE Trans. Inf. Theory.