Discovery of Emergent Sorting Behavior using Swarm Intelligence and Grid-Enabled Genetic Algorithms

The authors in this chapter use simple local comparison and swap operators and demonstrate that their repeated application ends up in sorted sequences across a range of variants, most of which are also genetically evolved. They experimentally validate a square run-time behavior for emergent sorting, suggesting that not knowing in advance which direction to sort and allowing such direction to emerge imposes a n/logn penalty over conventional techniques. The authors validate the emergent sorting algorithms via genetically searching for the most favorable parameter configuration using a grid infrastructure.

[1]  R. Rajendra Prasath Algorithms for distributed sorting and prefix computation in static ad hoc mobile networks , 2010, 2010 International Conference on Electronics and Information Engineering.

[2]  Xin Yao,et al.  Drift analysis and average time complexity of evolutionary algorithms , 2001, Artif. Intell..

[3]  Thomas Sauerwald,et al.  Randomized protocols for information dissemination , 2008 .

[4]  Martin Vetterli,et al.  Interval consensus: From quantized gossip to voting , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[5]  Derick Wood,et al.  A survey of adaptive sorting algorithms , 1992, CSUR.

[6]  Moez Draief,et al.  Convergence Speed of Binary Interval Consensus , 2010, 2010 Proceedings IEEE INFOCOM.

[7]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[8]  H. Fuks Solution of the density classification problem with two cellular automata rules , 1997, comp-gas/9703001.

[9]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[10]  Land,et al.  No perfect two-state cellular automata for density classification exists. , 1995, Physical review letters.

[11]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[12]  Heikki Mannila,et al.  Measures of Presortedness and Optimal Sorting Algorithms , 1985, IEEE Transactions on Computers.

[13]  Ori Gerstel,et al.  The Bit Complexity of Distributed Sorting , 1997, Algorithmica.

[14]  David Peleg,et al.  Distributed Probabilistic Polling and Applications to Proportionate Agreement , 1999, Inf. Comput..

[15]  Amos Israeli,et al.  Uniform Self-Stabilizing Ring Orientation , 1993, Inf. Comput..

[16]  Gillian Dobbie,et al.  Automatic Item Weight Generation for Pattern Mining and its Application , 2011, Int. J. Data Warehous. Min..

[17]  Mathieu S. Capcarrère,et al.  Necessary conditions for density classification by cellular automata. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Mary Ann Ingram,et al.  Modeling of a Cooperative One-Dimensional Multi-Hop Network Using Quasi-Stationary Markov Chains , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[19]  Alexandros G. Dimakis,et al.  Order-Optimal Consensus Through Randomized Path Averaging , 2010, IEEE Transactions on Information Theory.

[20]  David Taniar,et al.  Research and Trends in Data Mining Technologies and Applications , 2007 .

[21]  Timothy M. Chan,et al.  Fun-Sort--or the chaos of unordered binary search , 2004, Discret. Appl. Math..

[22]  Stuart M. Allen,et al.  Cooperation through self-similar social networks , 2010, TAAS.

[23]  H. Peter Hofstee,et al.  Distributed Sorting , 1990, Sci. Comput. Program..

[24]  Martin Vetterli,et al.  The Distributed Multiple Voting Problem , 2011, IEEE Journal of Selected Topics in Signal Processing.

[25]  José Luis Gordillo,et al.  Parallel sort on a linear array of cellular automata , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[26]  Michael C. Loui The Complexity of Sorting on Distributed Systems , 1984, Inf. Control..

[27]  Mohammed J. Zaki,et al.  Exploring Similarities Across High-Dimensional Datasets , 2007 .

[28]  Dimitrios Kalles,et al.  Emerge-Sort: Swarm Intelligence Sorting , 2012, SETN.

[29]  Johannes Gehrke,et al.  Gossip-based computation of aggregate information , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[30]  Michael Rabbat,et al.  Distributed Average Consensus using Probabilistic Quantization , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[31]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[32]  Paola Flocchini,et al.  Sorting and election in anonymous asynchronous rings , 2004, J. Parallel Distributed Comput..

[33]  E. Bonabeau From classical models of morphogenesis to agent-based models of pattern formation , 1997 .

[34]  E. Bonabeau,et al.  Fixed response thresholds and the regulation of division of labor in insect societies , 1998 .

[35]  Markus Holzer,et al.  Sorting the Slow Way: An Analysis of Perversely Awful Randomized Sorting Algorithms , 2007, FUN.

[36]  John R. Koza,et al.  Concept Formation and Decision Tree Induction Using the Genetic Programming Paradigm , 1990, PPSN.

[37]  Steven J. Ross The Spreadsort High-performance General-case Sorting Algorithm , 2002, PDPTA.

[38]  Julia Handl,et al.  Ant-based and swarm-based clustering , 2007, Swarm Intelligence.

[39]  Mirko Viroli,et al.  Collective Sorting Tuple Spaces , 2006, WOA.

[40]  Tim Roughgarden,et al.  The price of anarchy is independent of the network topology , 2002, STOC '02.

[41]  Nabil H. Mustafa,et al.  Majority Consensus and the Local Majority Rule , 2001, ICALP.

[42]  Thomas Bäck,et al.  Using a genetic algorithm to evolve behavior in multi dimensional cellular automata: emergence of behavior , 2005, GECCO '05.

[43]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[44]  Atsushi Sasaki A time-optimal distributed sorting algorithm on a line network , 2002, Inf. Process. Lett..

[45]  Erik A. van Doorn,et al.  Quasi-stationary distributions for reducible absorbing Markov chains in discrete time , 2008 .

[46]  Dimitrios Kalles,et al.  Breeding Decision Trees Using Evolutionary Techniques , 2001, ICML.

[47]  Alexandros G. Dimakis,et al.  Geographic Gossip: Efficient Averaging for Sensor Networks , 2007, IEEE Transactions on Signal Processing.

[48]  F. H. Bennett,et al.  Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem , 1996 .

[49]  Chase Qishi Wu,et al.  Distributed Throughput Optimization for Large-Scale Scientific Workflows Under Fault-Tolerance Constraint , 2013, Journal of Grid Computing.

[50]  Ingo Wegener,et al.  The Analysis of Evolutionary Algorithms on Sorting and Shortest Paths Problems , 2004 .

[51]  Roberto Montemanni,et al.  Design patterns from biology for distributed computing , 2006, TAAS.

[52]  Paula Gonzaga Sá,et al.  The Gacs-Kurdyumov-Levin automaton revisited , 1992 .

[53]  N. Franks,et al.  Brood sorting by ants: distributing the workload over the work-surface , 1992, Behavioral Ecology and Sociobiology.

[54]  Danny Dolev,et al.  An O(n log n) Unidirectional Distributed Algorithm for Extrema Finding in a Circle , 1982, J. Algorithms.

[55]  Stephen P. Boyd,et al.  Gossip algorithms: design, analysis and applications , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[56]  Melanie Mitchell,et al.  Complex systems: Network thinking , 2006, Artif. Intell..

[57]  Aki Jääskeläinen,et al.  Productivity Analysis of Public Services: An Application of Data Mining , 2010 .

[58]  Gerald Weber,et al.  HYBRIDJOIN for Near-Real-Time Data Warehousing , 2011, Int. J. Data Warehous. Min..