Where paths meet and cross: navigation by path integration in the desert ant and the honeybee

Animals that travel large distances in search of food need to be equipped with navigation systems that are capable of keeping track of the distance and direction of travel throughout their outbound journey, so that they may return home expeditiously and without losing their way. The challenge of homing is especially acute when the environment is devoid of landmarks. Desert ants and honeybees are able to meet this challenge, despite their minuscule brains and restricted computational capacity. This article reviews some of the processes and mechanisms that underlie the homing abilities of these creatures, which are among the best-understood navigators in the animal kingdom.

[1]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[2]  T. Collett,et al.  Animal Navigation: Path Integration, Visual Landmarks and Cognitive Maps , 2004, Current Biology.

[3]  R. Wehner,et al.  Path integration in a three-dimensional maze: ground distance estimation keeps desert ants Cataglyphis fortis on course , 2005, Journal of Experimental Biology.

[4]  T. Labhart Polarization-Sensitive Interneurons in the Optic Lobe of the Desert Ant Cataglyphis bicolor , 2000, Naturwissenschaften.

[5]  Uwe Homberg,et al.  Neurons of the Central Complex of the Locust Schistocerca gregaria are Sensitive to Polarized Light , 2002, The Journal of Neuroscience.

[6]  Matthias Wittlinger Mechanisms of three-dimensional (3D) path integration in the desert ant Cataglyphis fortis - odometry and slope detection , 2006 .

[7]  T. Labhart,et al.  Neural mechanisms in insect navigation: polarization compass and odometer , 2002, Current Opinion in Neurobiology.

[8]  Horst Mittelstaedt,et al.  Homing by Path Integration , 1982 .

[9]  Matthew Collett,et al.  Path integration in insects , 2000, Current Opinion in Neurobiology.

[10]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[11]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Their participation in place memory , 1998, The Journal of comparative neurology.

[12]  R. Wehner Desert ant navigation: how miniature brains solve complex tasks , 2003, Journal of Comparative Physiology A.

[13]  B. Ronacher,et al.  Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled , 1995, Journal of Comparative Physiology A.

[14]  P. Graham,et al.  Which portion of the natural panorama is used for view-based navigation in the Australian desert ant? , 2009, Journal of Comparative Physiology A.

[15]  Basil el Jundi,et al.  Integration of polarization and chromatic cues in the insect sky compass , 2014, Journal of Comparative Physiology A.

[16]  J. A. Stacey,et al.  Selective attention in the honeybee optic lobes precedes behavioral choices , 2014, Proceedings of the National Academy of Sciences.

[17]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[18]  Mandyam V. Srinivasan,et al.  FicTrac: A visual method for tracking spherical motion and generating fictive animal paths , 2014, Journal of Neuroscience Methods.

[19]  Thomas Labhart,et al.  Polarization-opponent interneurons in the insect visual system , 1988, Nature.

[20]  Jan Wessnitzer,et al.  Evolving a Neural Model of Insect Path Integration , 2007, Adapt. Behav..

[21]  R. Wehner,et al.  The ant’s estimation of distance travelled: experiments with desert ants, Cataglyphis fortis , 2003, Journal of Comparative Physiology A.

[22]  Stanley Heinze,et al.  Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex , 2009, The Journal of Neuroscience.

[23]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[24]  Zhang,et al.  Visually mediated odometry in honeybees , 1997, The Journal of experimental biology.

[25]  Rüdiger Wehner,et al.  Ant odometry in the third dimension , 2001, Nature.

[26]  R. Wehner Spatial Vision in Arthropods , 1981 .

[27]  R. Wehner Polarization vision--a uniform sensory capacity? , 2001, The Journal of experimental biology.

[28]  Andrew Philippides,et al.  How might ants use panoramic views for route navigation? , 2011, Journal of Experimental Biology.

[29]  Mandyam V Srinivasan,et al.  Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. , 2011, Physiological reviews.

[30]  F. G. Barth,et al.  A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances , 2003, Journal of Comparative Physiology A.

[31]  Paul Graham,et al.  Route learning by insects , 2003, Current Opinion in Neurobiology.

[32]  R Wehner,et al.  Path integration in desert ants, Cataglyphis fortis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. Wolf Odometry and insect navigation , 2011, Journal of Experimental Biology.

[34]  K. Frisch,et al.  Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen , 1949, Experientia.

[35]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[36]  Georg Hartmann,et al.  The ant's path integration system: a neural architecture , 1995, Biological Cybernetics.

[37]  Esch,et al.  Distance estimation by foraging honeybees , 1996, The Journal of experimental biology.

[38]  B. Ronacher,et al.  Distance estimation in the third dimension in desert ants , 2002, Journal of Comparative Physiology A.

[39]  J. Fellous,et al.  Visual Processing in the Central Bee Brain , 2009, The Journal of Neuroscience.

[40]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[41]  R. Wehner,et al.  Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. , 2000, The Journal of experimental biology.

[42]  Holk Cruse,et al.  Visual navigation strategies in insects: lessons from desert ants , 2014 .

[43]  L. Chalupa,et al.  The new visual neurosciences , 2014 .

[44]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[45]  Martin Egelhaaf,et al.  7 Novel Approaches to Visual Information Processing in Insects: Case Studies on Neuronal Computations in the Blowfly , 2005 .

[46]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Activity and identities of neurons recorded in freely moving animals , 1998, The Journal of comparative neurology.

[47]  M V Srinivasan,et al.  Honeybee navigation: critically examining the role of the polarization compass , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  T. Collett,et al.  Multiple stored views and landmark guidance in ants , 1998, Nature.

[49]  A. S. Edwards,et al.  Ontogeny of orientation flight in the honeybee revealed by harmonic radar , 2000, Nature.

[50]  Holk Cruse,et al.  No Need for a Cognitive Map: Decentralized Memory for Insect Navigation , 2011, PLoS Comput. Biol..

[51]  R. Wehner,et al.  The desert ant odometer: a stride integrator that accounts for stride length and walking speed , 2007, Journal of Experimental Biology.

[52]  R. Wehner,et al.  Beginnings of a synthetic approach to desert ant navigation , 2014, Behavioural Processes.

[53]  U. Homberg In search of the sky compass in the insect brain , 2004, Naturwissenschaften.

[54]  R. Wehner,et al.  Ant Navigation: One-Way Routes Rather Than Maps , 2006, Current Biology.

[55]  R. Wehner,et al.  Traveling in clutter: Navigation in the Central Australian desert ant Melophorus bagoti , 2009, Behavioural Processes.

[56]  Rüdiger Wehner,et al.  The significance of direct sunlight and polarized skylight in the ant’s celestial system of navigation , 2006, Proceedings of the National Academy of Sciences.

[57]  R. Wehner,et al.  Walking on inclines: how do desert ants monitor slope and step length , 2008, Frontiers in Zoology.

[58]  Shaowu Zhang,et al.  Honeybee dances communicate distances measured by optic flow , 2001, Nature.

[59]  D. Roubik,et al.  A stingless bee can use visual odometry to estimate both height and distance , 2012, Journal of Experimental Biology.

[60]  Walter Kaiser,et al.  Directionally selective motion detecting units in the optic lobe of the honeybee , 1970, Zeitschrift für vergleichende Physiologie.

[61]  Harald Wolf,et al.  Estimation of homing distance in desert ants, Cataglyphis fortis, remains unaffected by disturbance of walking behaviour , 2009, Journal of Experimental Biology.

[62]  S. Healy Spatial representation in animals. , 1998 .

[63]  T. Collett,et al.  Spatial Memory in Insect Navigation , 2013, Current Biology.

[64]  Rüdiger Wehner,et al.  Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors? , 2005, Neurobiology of Learning and Memory.

[65]  Allen Cheung,et al.  Animal navigation: general properties of directed walks , 2008, Biological Cybernetics.

[66]  R. Wehner,et al.  The bee's map of the e-vector pattern in the sky. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Allen Cheung,et al.  Animal navigation: the difficulty of moving in a straight line , 2007, Biological Cybernetics.

[68]  Mandyam V. Srinivasan,et al.  Path integration in insects , 2003 .

[69]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[70]  Antoine Wystrach,et al.  Landmarks or panoramas: what do navigating ants attend to for guidance? , 2011, Frontiers in Zoology.

[71]  Bernhard Ronacher,et al.  The polarization compass dominates over idiothetic cues in path integration of desert ants , 2012, Journal of Experimental Biology.

[72]  K. Frisch The dance language and orientation of bees , 1967 .

[73]  R. Menzel,et al.  The flight paths of honeybees recruited by the waggle dance , 2005, Nature.

[74]  H. Esch,et al.  Honeybees use optic flow to measure the distance of a food source , 2005, Naturwissenschaften.

[75]  Rüdiger Wehner,et al.  Neurobiology of polarization vision , 1989, Trends in Neurosciences.

[76]  R. Wehner,et al.  The Ant Odometer: Stepping on Stilts and Stumps , 2006, Science.

[77]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[78]  T. Christensen Methods in insect sensory neuroscience. , 2004 .

[79]  M. Srinivasan,et al.  Searching behaviour of desert ants, genusCataglyphis (Formicidae, Hymenoptera) , 2004, Journal of comparative physiology.

[80]  M. Srinivasan,et al.  Honeybee navigation: distance estimation in the third dimension , 2007, Journal of Experimental Biology.

[81]  Michael B. Reiser,et al.  Two-photon calcium imaging from motion-sensitive neurons in head-fixed Drosophila during optomotor walking behavior , 2010, Nature Methods.

[82]  R. Morse The Dance Language and Orientation of Bees , 1994 .