Representation of properties of materials by Voronoi polyhedra

Abstract The Voronoi diagram was computed using both a boundary cube and a periodic boundary condition, and two widely different algorithms. Two systems, one a small one of 61 points representing amorphous Si or Ge and another a large one of 500 points representing a high density liquid were studied. Effects of the periodic boundary condition are shown in terms of average numbers of faces, distributions of faces and the radial distribution functions. The results indicate that to decide whether a boundary cube or a periodic boundary condition is preferred for a given application, one has to take into account: boundary condition used to generate the system, inclusion or otherwise of the surface effects, extent of symmetry desired and extent of homogenization required.

[1]  N. N. Medvedev,et al.  Local environmental geometry of atoms in the Lennard-Jones systems , 1986 .

[2]  R Collins,et al.  A geometrical sum rule for two-dimensional fluid correlation functions , 1968 .

[3]  A. Mackay,et al.  TOWARDS A GRAMMAR OF INORGANIC STRUCTURE , 1986 .

[4]  W. Brostow,et al.  Coordination number in liquid argon , 1975 .

[5]  Witold Brostow,et al.  Science of materials , 1979 .

[6]  B. Wunderlich,et al.  Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules , 1984 .

[7]  Alan L. Mackay,et al.  Stereological characteristics of atomic arrangements in crystals , 1972 .

[8]  F. Richards The interpretation of protein structures: total volume, group volume distributions and packing density. , 1974, Journal of molecular biology.

[9]  Aneesur Rahman,et al.  Liquid Structure and Self‐Diffusion , 1966 .

[10]  D. F. Watson,et al.  Radial generation of n-dimensional poisson processes , 1984, Journal of Applied Probability.

[11]  W. Brostow,et al.  Mechanical fragmentation, Voronoi polyhedra and the theory of information , 1985 .

[12]  D. Rapaport Density fluctuations and hydrogen bonding in supercooled water , 1983 .

[13]  F. W. Smith THE STRUCTURE OF AGGREGATES—A CLASS OF 20-FACED SPACE-FILLING POLYHEDRA , 1965 .

[14]  J. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[15]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[16]  D. Henderson Random tetrahedral network with periodic boundary conditions , 1974 .

[17]  N. N. Medvedev,et al.  Shape of the Delaunay simplices in dense random packings of hard and soft spheres , 1987 .

[18]  Tohru Ogawa,et al.  A new algorithm for three-dimensional voronoi tessellation , 1983 .

[19]  J. D. Bernal,et al.  A Geometrical Approach to the Structure Of Liquids , 1959, Nature.

[20]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[21]  F. W. Smith THE STRUCTURE OF AGGREGATES AND THE MOLECULAR KINEMATICS OF THE VISCOSITY OF A BERNAL LIQUID , 1964 .

[22]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[23]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[24]  Peter Engel Über Wirkungsbereichsteilungen von kubischer Symmetrie , 1981 .

[25]  D. Weaire,et al.  Soap, cells and statistics – random patterns in two dimensions , 1984 .

[26]  Nikolai N. Medvedev,et al.  Structure of simple liquids as a percolation problem on the Voronoi network , 1988 .

[27]  Shinji Kobayashi,et al.  Computer Simulation of Atomic Srtucture of Cu57Zr43 Amorphous Alloy , 1980 .

[28]  Ryoichi Yamamoto,et al.  The polyhedron and cavity analyses of a structural model of amorphous iron , 1979 .

[29]  W. Brostow,et al.  Some properties of the informational model of the liquid state , 1973 .

[30]  N. N. Medvedev,et al.  The algorithm for three-dimensional Voronoi polyhedra , 1986 .

[31]  B. Fox,et al.  Construction of Voronoi Polyhedra , 1978 .

[32]  D. F. Watson The number of edges per face in a large aggregate of space-filling, random-sized, randomly arranged polyhedra , 1975 .