Decision Problems for Groups — Survey and Reflections

This is a survey of decision problems for groups, that is of algorithms for answering various questions about groups and their elements. The general objective of this area can be formulated as follows: Objective: To determine the existence and nature of algorithms which decide local properties — whether or not elements of a group have certain properties or relationships; global properties— whether or not groups as a whole possess certain properties or relationships.

[1]  Martin Greendlinger,et al.  Dehn's algorithm for the word problem , 1960 .

[2]  William W. Boone Word Problems and Recursively Enumerable Degrees of Unsolvability. A Sequel on Finitely Presented Groups , 1966 .

[3]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[4]  P. Hall,et al.  On the embedding of a group in a join of given groups , 1974, Journal of the Australian Mathematical Society.

[5]  Friedrich Otto,et al.  About the Descriptive Power of Certain Classes of Finite String-Rewriting Systems , 1989, Theor. Comput. Sci..

[6]  S. M. Gersten,et al.  Small cancellation theory and automatic groups: Part II , 1991 .

[7]  Michael Shapiro,et al.  Automatic Groups and Amalgams — A Survey , 1992 .

[8]  D. Segal Decidable Properties of Polycyclic Groups , 1990 .

[9]  Donald J. Collins,et al.  The Conjugacy Problem and Subgroups of Finite Index , 1977 .

[10]  George W. Polites,et al.  An introduction to the theory of groups , 1968 .

[11]  C. R. J. Clapham,et al.  An Embedding Theorem for Finitely Generated Groups , 1967 .

[12]  Frank B. Cannonito,et al.  Some recognizable properties of solvable groups , 1981 .

[13]  Gilbert Baumslag,et al.  Some Unsolvable Problems about Elements and Subgroups of Groups. , 1959 .

[14]  Dan Segal,et al.  Some general algorithms. I: Arithmetic groups , 1980 .

[15]  S. Gersten,et al.  Small cancellation theory and automatic groups , 1990 .

[16]  Frank B. Cannonito,et al.  Computable algebra and group embeddings , 1981 .

[17]  Michael O. Rabin,et al.  Recursive Unsolvability of Group Theoretic Problems , 1958 .

[18]  Elizabeth Scott A finitely presented simple group with unsolvable conjugacy problem , 1984 .

[19]  Philippe le Chenadec Canonical forms in finitely presented algebras , 1984, Research notes in theoretical computer science.

[20]  G. Higman,et al.  A Finitely Generated Infinite Simple Group , 1951 .

[21]  M. Dehn Über unendliche diskontinuierliche Gruppen , 1911 .

[22]  Dan Segal,et al.  The algorithmic theory of polycyclic-by-finite groups☆ , 1991 .

[23]  W. W. Boone,et al.  On a Problem of J.H.C. Whitehead and a Problem of Alonzo Church. , 1966 .

[24]  S. Gersten,et al.  Rational subgroups of biautomatic groups , 1991 .

[25]  A. Mostowski On the decidability of some problems in special classes of groups , 1966 .

[26]  James Howie,et al.  Some embedding theorems and undecidability questions for groups , 1994 .

[27]  Paul E. Schupp,et al.  Embeddings into Simple Groups , 1976 .

[28]  G. Higman Subgroups of finitely presented groups , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  Kenneth S. Brown,et al.  The Geometry of Rewriting Systems: A Proof of the Anick-Groves-Squier Theorem , 1992 .

[30]  B. B. Newman,et al.  Some results on one-relator groups , 1968 .

[31]  J. R. J. Groves Rewriting systems and homology of groups , 1990 .

[32]  P. Hall,et al.  Finiteness Conditions for Soluble Groups , 1954 .

[33]  M. Hall The Theory Of Groups , 1959 .

[34]  William W. Boone,et al.  An algebraic characterization of groups with soluble word problem , 1974, Journal of the Australian Mathematical Society.

[35]  M. J. Dunwoody The accessibility of finitely presented groups , 1985 .

[36]  B. H. Neumann,et al.  Some Remarks on Infinite Groups , 1937 .

[37]  A. L. Shmel’kin Polycyclic groups , 1968 .

[38]  Donald J. Collins Representation of turing reducibility by word and conjugacy problems in finitely presented groups , 1972 .

[39]  William W. Boone Word Problems and Recursively Enumerable Degrees of Unsolvability , 1971 .

[40]  D. J. Collins Review: K. A. Mihajlova, (Problema vhozdenia did pramyh proizvedenij grupp):The Occurrence Problem for Direct Products of Groups , 1971 .

[41]  Martin Greendlinger,et al.  On Dehn's algorithms for the conjugacy and word problems, with applications , 1960 .

[42]  J. C. C. McKinsey,et al.  The decision problem for some classes of sentences without quantifiers , 1943, Journal of Symbolic Logic.

[43]  G. A. Noskov Conjugacy problem in Metabelian groups , 1982 .

[44]  V. Remeslennikov Conjugacy in polycyclic groups , 1969 .

[45]  C. R. J. Clapham Finitely Presented Groups with Word Problems of Arbitrary Degrees of Insolubility , 1964 .

[46]  I G Lysënok,et al.  ON SOME ALGORITHMIC PROPERTIES OF HYPERBOLIC GROUPS , 1990 .

[47]  Dan Segal,et al.  Some general algorithms. II: Nilpotent groups , 1980 .

[48]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[49]  E. Formanek Conjugate separability in polycyclic groups , 1976 .

[50]  Frank B. Cannonito,et al.  Infinitely generated subgroups of finitely presented groups. Part II , 1977 .

[51]  Craig C. Squier,et al.  Word problems and a homological niteness condition for monoids , 1987 .

[52]  Gilbert Baumslag,et al.  Algorithmically insoluble problems about finitely presented solvable groups, lie, and associative algebras , 1985 .

[53]  U. Bässler [On the regulation of the position of the femur-tibial joint of the walking-stick insect Carausius morosus at rest and in motion]. , 1967, Kybernetik.

[54]  Yu G Kleĭman,et al.  SOME QUESTIONS IN THE THEORY OF VARIETIES OF GROUPS , 1984 .

[55]  V. N. Remeslennikov,et al.  Finite approximability of metabelian groups , 1968 .

[56]  Gilbert Baumslag,et al.  Subgroups of Direct Products of Free Groups , 1984 .

[57]  Gilbert Baumslag,et al.  Automatic groups and amalgams , 1991 .

[58]  Wilhelm Magnus,et al.  Über diskontinuierliche Gruppen mit einer definierenden Relation. (Der Freiheitssatz). , 1930 .

[59]  Frank B. Cannonito,et al.  Infinitely generated subgroups of finitely presented groups. I , 1977 .

[60]  Paul E. Schupp,et al.  Embeddings into hopfian groups , 1971 .

[61]  Gilbert Baumslag,et al.  Some two-generator one-relator non-Hopfian groups , 1962 .

[62]  G. Higman,et al.  Embedding Theorems for Groups , 1949 .

[63]  David E. Muller,et al.  Groups, the Theory of Ends, and Context-Free Languages , 1983, J. Comput. Syst. Sci..

[64]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[65]  Roger C. Lyndon,et al.  On Dehn's algorithm , 1966 .

[66]  W. Magnus Das Identitätsproblem für Gruppen mit einer definierenden Relation , 1932 .

[67]  Paul E. Schupp,et al.  On Dehn's algorithm and the conjugacy problem , 1968 .

[68]  K A Mihailova THE OCCURRENCE PROBLEM FOR FREE PRODUCTS OF GROUPS , 1968 .

[69]  G. Baumslag,et al.  On the integral homology of finitely-presented groups , 1981 .

[70]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[71]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[72]  Daniel Segal,et al.  Decision problems concerning S-arithmetic groups , 1985, Journal of Symbolic Logic.

[73]  W. Magnus,et al.  Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .

[74]  Charles F. Miller On Group-Theoretic Decision Problems and Their Classification. , 1971 .

[75]  Fred Galvin Embedding Countable Groups in 2-Generator Groups , 1993 .

[76]  Arye Juhász Solution of the Conjugacy Problem in One-Relator Groups , 1992 .

[77]  D. F. Holt,et al.  AN INTRODUCTION TO THE THEORY OF GROUPS (Third Edition) , 1985 .

[78]  D. Anick,et al.  On the homology of associative algebras , 1986 .

[79]  Gilbert Baumslag,et al.  Algorithmically insoluble problems about finitely presented solvable groups, lie and associative algebras. I , 1986 .