Iterative and Non-iterative Simulation Algorithms

The Gibbs sampler, Metropolis’ algorithm, and similar iterative simulation methods are related to rejection sampling and importance sampling, two methods which have been traditionally thought of as non-iterative. We explore connections between importance sampling, iterative simulation, and importance-weighted resampling (SIR), and present new algorithms that combine aspects of importance sampling, Metropolis’ algorithm, and the Gibbs sampler.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[7]  Donald B. Rubin,et al.  Comment : A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest : The SIR Algorithm , 1987 .

[8]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[9]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[10]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[11]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[12]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[13]  Xiao-Li Meng,et al.  Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .

[14]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[15]  L. Tierney Exploring Posterior Distributions Using Markov Chains , 1992 .

[16]  D. Spiegelhalter,et al.  Modelling Complexity: Applications of Gibbs Sampling in Medicine , 1993 .

[17]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[18]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[19]  P. Atzberger The Monte-Carlo Method , 2006 .

[20]  D. Rubin,et al.  A Single Series from the Gibbs Sampler Provides a False Sense of Security * , 2008 .