Magnetic Resonance Imaging of the Newborn Brain: Automatic Segmentation of Brain Images into 50 Anatomical Regions

We studied methods for the automatic segmentation of neonatal and developing brain images into 50 anatomical regions, utilizing a new set of manually segmented magnetic resonance (MR) images from 5 term-born and 15 preterm infants imaged at term corrected age called ALBERTs. Two methods were compared: individual registrations with label propagation and fusion; and template based registration with propagation of a maximum probability neonatal ALBERT (MPNA). In both cases we evaluated the performance of different neonatal atlases and MPNA, and the approaches were compared with the manual segmentations by means of the Dice overlap coefficient. Dice values, averaged across regions, were 0.81±0.02 using label propagation and fusion for the preterm population, and 0.81±0.02 using the single registration of a MPNA for the term population. Segmentations of 36 further unsegmented target images of developing brains yielded visibly high-quality results. This registration approach allows the rapid construction of automatically labeled age-specific brain atlases for neonates and the developing brain.

[1]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[2]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[3]  Alexander Hammers,et al.  Three‐dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe , 2003, Human brain mapping.

[4]  Michael W. Weiner,et al.  Corrigendum to “Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls” [NeuroImage 43 (2008) 59–68] , 2009, NeuroImage.

[5]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[6]  J. Allsop,et al.  Quantification of Deep Gray Matter in Preterm Infants at Term-Equivalent Age Using Manual Volumetry of 3-Tesla Magnetic Resonance Images , 2007, Pediatrics.

[7]  J.L. Marroquin,et al.  An accurate and efficient Bayesian method for automatic segmentation of brain MRI , 2002, IEEE Transactions on Medical Imaging.

[8]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[9]  R. Bajcsy,et al.  A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. , 1983, Journal of computer assisted tomography.

[10]  Marko Wilke,et al.  Variability of gray and white matter during normal development: a voxel-based MRI analysis , 2003, Neuroreport.

[11]  J. Gilmore,et al.  Infant Brain Atlases from Neonates to 1- and 2-Year-Olds , 2011, PloS one.

[12]  D L Hill,et al.  Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. , 1997, Medical physics.

[13]  Ron Kikinis,et al.  Adaptive Template Moderated Spatially Varying Statistical Classification , 1998, MICCAI.

[14]  Daniel Rueckert,et al.  Similarity Metrics for Groupwise Non-rigid Registration , 2007, MICCAI.

[15]  R. Leahy,et al.  Magnetic Resonance Image Tissue Classification Using a Partial Volume Model , 2001, NeuroImage.

[16]  Michael I. Miller,et al.  Atlas-based analysis of neurodevelopment from infancy to adulthood using diffusion tensor imaging and applications for automated abnormality detection , 2010, NeuroImage.

[17]  H. Engeland,et al.  Variability in spatial normalization of pediatric and adult brain images , 2005, Clinical Neurophysiology.

[18]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[19]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[20]  et al.,et al.  The Effect of Template Choice on Morphometric Analysis of Pediatric Brain Data ☆ , 2022 .

[21]  Olaf B. Paulson,et al.  MR-based automatic delineation of volumes of interest in human brain PET images using probability maps , 2005, NeuroImage.

[22]  Hong Wang,et al.  Abnormal Cerebral Structure Is Present at Term in Premature Infants , 2005, Pediatrics.

[23]  Hamid Abrishami Moghaddam,et al.  Design and construction of a brain phantom to simulate neonatal MR images , 2011, Comput. Medical Imaging Graph..

[24]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[25]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[26]  Daniel Rueckert,et al.  Magnetic resonance imaging of the newborn brain: Manual segmentation of labelled atlases in term-born and preterm infants , 2012, NeuroImage.

[27]  Scott Holland,et al.  Infant brain probability templates for MRI segmentation and normalization , 2008, NeuroImage.

[28]  Alexander Hammers,et al.  Volumes, spatial extents and a probabilistic atlas of the human basal ganglia and thalamus , 2007, NeuroImage.

[29]  William Davis Gaillard,et al.  Developmental Aspects of Pediatric fMRI: Considerations for Image Acquisition, Analysis, and Interpretation , 2001, NeuroImage.

[30]  Jue Wu,et al.  A novel framework for segmentation of deep brain structures based on Markov dependence tree , 2009, NeuroImage.

[31]  R. Kikinis,et al.  An Automated Registration Algorithm for Measuring MRI Subcortical Brain Structures , 1997, NeuroImage.

[32]  D. Louis Collins,et al.  ANIMAL+INSECT: Improved Cortical Structure Segmentation , 1999, IPMI.

[33]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[34]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[35]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[36]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[37]  Scott Holland,et al.  Template-O-Matic: A toolbox for creating customized pediatric templates , 2008, NeuroImage.

[38]  J. Ashburner,et al.  Multimodal Image Coregistration and Partitioning—A Unified Framework , 1997, NeuroImage.

[39]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[40]  L. Lemieux,et al.  Reliable callosal measurement: population normative data confirm sex-related differences. , 2003, AJNR. American journal of neuroradiology.

[41]  Daniel Rueckert,et al.  Atlas selection strategy for automatic segmentation of pediatric brain MRIs into 83 ROIs , 2010, 2010 IEEE International Conference on Imaging Systems and Techniques.

[42]  O. Muzik,et al.  Statistical Parametric Mapping: Assessment of Application in Children , 2000, NeuroImage.

[43]  Michael I. Miller,et al.  Multi-contrast human neonatal brain atlas: Application to normal neonate development analysis , 2011, NeuroImage.

[44]  Michael Weiner,et al.  and the Alzheimer’s Disease Neuroimaging Initiative* , 2007 .

[45]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[46]  Cameron S. Carter,et al.  Optimum template selection for atlas-based segmentation , 2007, NeuroImage.

[47]  Abraham Z. Snyder,et al.  The Feasibility of a Common Stereotactic Space for Children and Adults in fMRI Studies of Development , 2002, NeuroImage.

[48]  R. Kikinis,et al.  Quantitative magnetic resonance imaging of brain development in premature and mature newborns , 1998, Annals of neurology.

[49]  I. Pople,et al.  Pediatric Brain and Spine: An Atlas of MRI and Spectroscopy , 2005, Acta Neurochirurgica.

[50]  I. S. Gousias,et al.  Automatic segmentation of pediatric brain MRIs using a maximum probability pediatric atlas , 2012, 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings.

[51]  Hamid Abrishami Moghaddam,et al.  A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: Preliminary results , 2007, NeuroImage.

[52]  Timothy Edward John Behrens,et al.  Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. , 2007, Brain : a journal of neurology.

[53]  A. Anderson,et al.  Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. , 2003, Pediatrics.

[54]  Derek L. G. Hill,et al.  Quantification of small cerebral ventricular volume changes in treated growth hormone patients using nonrigid registration , 2002, IEEE Transactions on Medical Imaging.

[55]  Marko Wilke,et al.  Assessment of spatial normalization of whole‐brain magnetic resonance images in children , 2002, Human brain mapping.

[56]  S. Dehaene,et al.  Functional Neuroimaging of Speech Perception in Infants , 2002, Science.

[57]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  D. Louis Collins,et al.  BEaST: Brain extraction based on nonlocal segmentation technique , 2012, NeuroImage.

[59]  Daniel Rueckert,et al.  Groupwise Combined Segmentation and Registration for Atlas Construction , 2007, MICCAI.

[60]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[61]  Qian Wang,et al.  Construction and Validation of Mean Shape Atlas Templates for Atlas-Based Brain Image Segmentation , 2005, IPMI.

[62]  Daniel Rueckert,et al.  A dynamic 4D probabilistic atlas of the developing brain , 2011, NeuroImage.

[63]  Terrie E. Inder,et al.  MRI of the Neonatal Brain , 2002 .

[64]  Stephanie Powell,et al.  Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures , 2008, NeuroImage.

[65]  Daniel Rueckert,et al.  Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest , 2008, NeuroImage.

[66]  P. Ellen Grant,et al.  Detailed semiautomated MRI based morphometry of the neonatal brain: Preliminary results , 2006, NeuroImage.

[67]  M Wilke,et al.  Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data , 2003, Magnetic resonance in medicine.

[68]  Baba C. Vemuri,et al.  An Accurate and Efficient Bayesian Method for Automatic Segmentation of Brain MRI , 2002, ECCV.

[69]  Derek K. Jones,et al.  Spatial Normalization and Averaging of Diffusion Tensor MRI Data Sets , 2002, NeuroImage.

[70]  John Duncan,et al.  Implementation and application of a brain template for multiple volumes of interest , 2002, Human brain mapping.

[71]  Simon K. Warfield,et al.  Highly Accurate Segmentation of Brain Tissue and Subcortical Gray Matter from Newborn MRI , 2006, MICCAI.

[72]  John H. Gilmore,et al.  Automatic segmentation of MR images of the developing newborn brain , 2005, Medical Image Anal..

[73]  Hanna Damasio,et al.  Effects of spatial transformation on regional brain volume estimates , 2008, NeuroImage.

[74]  L. Lemieux,et al.  Statistical neuroanatomy of the human inferior frontal gyrus and probabilistic atlas in a standard stereotaxic space , 2007, Human brain mapping.

[75]  Dirk Vandermeulen,et al.  Linear normalization of MR brain images in pediatric patients with periventricular leukomalacia , 2007, NeuroImage.

[76]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.