Avaliação do método dialético na quantização de imagens multiespectrais

The unsupervised classification has a very important role in the analysis of multispectral images, given its ability to assist the extraction of a priori knowledge of images. Algorithms like k-means and fuzzy c-means has long been used in this task. Computational Intelligence has proven to be an important field to assist in building classifiers optimized according to the quality of the grouping of classes and the evaluation of the quality of vector quantization. Several studies have shown that Philosophy, especially the Dialectical Method, has served as an important inspiration for the construction of new computational methods. This paper presents an evaluation of four methods based on the Dialectics: the Objective Dialectical Classifier and the Dialectical Optimization Method adapted to build a version of k-means with optimal quality indices; each of them is presented in two versions: a canonical version and another version obtained by applying the Principle of Maximum Entropy. These methods were compared to k-means, fuzzy c-means and Kohonen’s self-organizing maps. The results showed that the methods based on Dialectics are robust to noise, and quantization can achieve results as good as those obtained with the Kohonen map, considered an optimal quantizer.

[1]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[2]  A. Evans,et al.  MRI simulation-based evaluation of image-processing and classification methods , 1999, IEEE Transactions on Medical Imaging.

[3]  Miin-Shen Yang,et al.  Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation , 2006, Pattern Recognit. Lett..

[4]  M. Giger,et al.  A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images. , 2006, Academic radiology.

[5]  Emilio F. Campana,et al.  Dynamic system analysis and initial particles position in Particle Swarm Optimization , 2006 .

[6]  Wellington Pinheiro dos Santos,et al.  Avaliação da doença de Alzheimer pela análise multiespectral de imagens DW-MR por redes RBF como alternativa aos mapas ADC , 2016, ArXiv.

[7]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[8]  Nicolino J. Pizzi,et al.  Robust centroids using fuzzy clustering with feature partitions , 2005, Pattern Recognit. Lett..

[9]  A. Wright,et al.  Markov chain models of genetic algorithms , 1999 .

[10]  Sanghamitra Bandyopadhyay,et al.  Application of a New Symmetry-Based Cluster Validity Index for Satellite Image Segmentation , 2008, IEEE Geoscience and Remote Sensing Letters.

[12]  W. Santos,et al.  A Dialectical Method to Classify Alzheimer's Magnetic Resonance Images , 2009 .

[13]  Yongling Zheng,et al.  On the convergence analysis and parameter selection in particle swarm optimization , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[15]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[16]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[17]  Tianzi Jiang,et al.  Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images , 2003, NeuroImage.

[18]  Jeffrey D. Scargle,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution : easy Bayesian computing for real parameter spaces , 2015 .

[19]  Riccardo Poli,et al.  Markov chain models of bare-bones particle swarm optimizers , 2007, GECCO '07.

[20]  Rose,et al.  Statistical mechanics and phase transitions in clustering. , 1990, Physical review letters.

[21]  Francisco M. de Assis,et al.  Dialectical non-supervised image classification , 2009, 2009 IEEE Congress on Evolutionary Computation.

[22]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[23]  Erick Cantú-Paz,et al.  Markov chain models of parallel genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[24]  Francisco Marcos de Assis,et al.  A dialectical approach for classification of DW-MR Alzheimer’s images , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[25]  Swagatam Das,et al.  Kernel-based clustering of image pixels with modified Differential Evolution , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[26]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[27]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[28]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[29]  Shahryar Rahnamayan,et al.  A novel population initialization method for accelerating evolutionary algorithms , 2007, Comput. Math. Appl..

[30]  Francisco Marcos de Assis,et al.  Optimization based on dialectics , 2009, IJCNN.

[31]  Shiyuan Yang,et al.  Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm , 2007, Inf. Process. Lett..

[32]  Debao Chen,et al.  Data-driven fuzzy clustering based on maximum entropy principle and PSO , 2009, Expert Syst. Appl..

[33]  Wellington Pinheiro dos Santos,et al.  A Monospectral Approach for fMRI Analysis using Kohonen Self-Organized Networks , 2007, Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007).

[34]  Claus Lamm,et al.  Fuzzy cluster analysis of high-field functional MRI data , 2003, Artif. Intell. Medicine.

[35]  Francisco Marcos de Assis,et al.  Dialectical multispectral classification of diffusion-weighted magnetic resonance images as an alternative to apparent diffusion coefficients maps to perform anatomical analysis , 2009, Comput. Medical Imaging Graph..

[36]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[37]  R. E. de Souza,et al.  Evaluation of Alzheimer's Disease by Analysis of MR Images using Multilayer Perceptrons and Kohonen SOM Classifiers as an Alternative to the ADC Maps , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[38]  Joe Suzuki,et al.  A Further Result on the Markov Chain Model of Genetic Algorithms and Its Application to a Simulated Annealing-like Strategy , 1998, FOGA.

[39]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[40]  K. Rose Deterministic annealing for clustering, compression, classification, regression, and related optimization problems , 1998, Proc. IEEE.

[41]  Amit Konar,et al.  Automatic image pixel clustering with an improved differential evolution , 2009, Appl. Soft Comput..

[42]  Jing Liu,et al.  Underwater Image Segmentation with Maximum Entropy based on Particle Swarm Optimization (PSO) , 2006, First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06).

[43]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization method for image clustering , 2005, Int. J. Pattern Recognit. Artif. Intell..

[44]  Wellington Pinheiro dos Santos,et al.  Avaliação da Doença de Alzheimer pela Análise Multiespectral de Imagens DW-MR por Mapas Auto-Organizados de Kohonen como Alternativa aos Mapas ADC , 2007 .

[45]  Wellington Pinheiro dos Santos,et al.  Evaluation of Alzheimer's Disease by Analysis of MR Images Using Multilayer Perceptrons, Polynomial Nets and Kohonen LVQ Classifiers , 2007, MIRAGE.

[46]  Plínio B. Santos Filho,et al.  Evaluation of Alzheimer's disease by analysis of MR images using Objective Dialectical Classifiers as an alternative to ADC maps , 2008, EMBC 2008.

[47]  Francisco Marcos de Assis,et al.  Fuzzy-based dialectical non-supervised image classification and clustering , 2010, Int. J. Hybrid Intell. Syst..