A regularity lemma and twins in words
暂无分享,去创建一个
[1] Arto Salomaa. Counting (scattered) Subwords , 2003, Bull. EATCS.
[2] Miroslav Dudík,et al. Reconstruction from subsequences , 2003, J. Comb. Theory A.
[3] R. Graham,et al. Quasi-random subsets of Z n , 1992 .
[4] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[5] J. Allouche. Algebraic Combinatorics on Words , 2005 .
[6] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[7] Vojtech Rödl,et al. The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.
[8] Xuhua Xia,et al. Bioinformatics and the cell - modern computational approaches in genomics, proteomics and transcriptomics , 2007 .
[9] Xin-She Yang,et al. Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.
[10] Arto Salomaa,et al. Subword histories and Parikh matrices , 2004, J. Comput. Syst. Sci..
[11] Daniel S. Hirschberg,et al. A linear space algorithm for computing maximal common subsequences , 1975, Commun. ACM.
[12] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[13] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[14] Tero Harju,et al. Combinatorics on Words , 2004 .