Tight bounds for popping algorithms

We sharpen run-time analysis for algorithms under the partial rejection sampling framework. Our method yields improved bounds for: the cluster-popping algorithm for approximating all-terminal network reliability; the cycle-popping algorithm for sampling rooted spanning trees; the sink-popping algorithm for sampling sink-free orientations. In all three applications, our bounds are not only tight in order, but also optimal in constants.

[1]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[2]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[3]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[4]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[5]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[6]  Alexander I. Barvinok,et al.  Combinatorics and Complexity of Partition Functions , 2017, Algorithms and combinatorics.

[7]  Viresh Patel,et al.  Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials , 2016, Electron. Notes Discret. Math..

[8]  Aleksander Madry,et al.  Fast Generation of Random Spanning Trees and the Effective Resistance Metric , 2015, SODA.

[9]  M. Jerrum Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .

[10]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[11]  Mario Szegedy,et al.  Moser and tardos meet Lovász , 2011, STOC.

[12]  Vladimir Kolmogorov,et al.  A Faster Approximation Algorithm for the Gibbs Partition Function , 2016, COLT.

[13]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..

[14]  Mark Jerrum,et al.  Perfect simulation of the Hard Disks Model by Partial Rejection Sampling , 2018, ICALP.

[15]  Mark Jerrum,et al.  A Polynomial-Time Approximation Algorithm for All-Terminal Network Reliability , 2017, ICALP.

[16]  Mark Jerrum,et al.  On the complexity of evaluating multivariate polynomials , 1981 .

[17]  David Bruce Wilson,et al.  How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph , 1998, J. Algorithms.

[18]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[19]  JerrumMark,et al.  Uniform Sampling Through the Lovász Local Lemma , 2019 .

[20]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[21]  Aleksander Madry,et al.  Faster Generation of Random Spanning Trees , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[22]  D. Gamarnik,et al.  Counting without sampling: Asymptotics of the log-partition function for certain statistical physics models , 2008 .

[23]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[24]  Robin Pemantle,et al.  Generating a Random Sink-free Orientation in Quadratic Time , 2002, Electron. J. Comb..

[25]  Aaron Schild,et al.  An almost-linear time algorithm for uniform random spanning tree generation , 2017, STOC.

[26]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[27]  Mark Huber,et al.  Exact sampling and approximate counting techniques , 1998, STOC '98.

[28]  Ankur Moitra,et al.  Approximate counting, the Lovasz local lemma, and inference in graphical models , 2016, STOC.

[29]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[30]  Mark Jerrum,et al.  Approximately counting bases of bicircular matroids , 2018, Combinatorics, Probability and Computing.

[31]  Martin E. Dyer,et al.  Graph orientations with no sink and an approximation for a hard case of #SAT , 1997, SODA '97.

[32]  John Peebles,et al.  Sampling random spanning trees faster than matrix multiplication , 2016, STOC.

[33]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[34]  Martin E. Dyer,et al.  A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.

[35]  Igor Pak,et al.  Generalized loop‐erased random walks and approximate reachability , 2014, Random Struct. Algorithms.

[36]  Jukka Suomela,et al.  A lower bound for the distributed Lovász local lemma , 2015, STOC.

[37]  Heng Guo,et al.  Modified log-Sobolev Inequalities for Strongly Log-Concave Distributions , 2019, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[38]  Kimmo Eriksson,et al.  Strong Convergence and a Game of Numbers , 1996, Eur. J. Comb..

[39]  Richard Peng,et al.  Determinant-Preserving Sparsification of SDDM Matrices with Applications to Counting and Sampling Spanning Trees , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[40]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[41]  Marc Noy,et al.  On the Complexity of Computing the Tutte Polynomial of Bicircular Matroids , 2006, Combinatorics, Probability and Computing.