Isogeometric contact analysis: Geometric basis and formulation for frictionless contact

This paper introduces an isogeometric framework for the numerical analysis of contact problems. In this approach, NURBS is utilized as basis for geometric representation and analysis. The contact surfaces and the underlying solids are parameterized in an identical paradigm. The use of NURBS geometry eliminates at the onset the geometric discontinuities induced by the traditional faceted approximation. Contact detection is carried out patch-wise, instead of element-wise, leading to an efficient and robust numerical algorithm. A strategy for smoothing sharp corners is also described. The algorithm does not rely on fillets but entails only a minor perturbation to the NURBS parameters. A variationally consistent surface-to-surface formulation is developed in the context of frictionless contact. Numerical examples are presented to demonstrate the performance and utility of the method.

[1]  Peter Wriggers,et al.  Mortar based frictional contact formulation for higher order interpolations using the moving friction cone , 2006 .

[2]  Gerhard A. Holzapfel,et al.  Cn continuous modelling of smooth contact surfaces using NURBS and application to 2D problems , 2003 .

[3]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[4]  Shaker A. Meguid,et al.  On the modelling of smooth contact surfaces using cubic splines , 2001 .

[5]  T. Laursen,et al.  A framework for development of surface smoothing procedures in large deformation frictional contact analysis , 2001 .

[6]  Michael A. Puso,et al.  A 3D mortar method for solid mechanics , 2004 .

[7]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[8]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[9]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[10]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[11]  Panayiotis Papadopoulos,et al.  A Novel Three-Dimensional Contact Finite Element Based on Smooth Pressure Interpolations , 2001 .

[12]  J. C. Simo,et al.  A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .

[13]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[14]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[15]  M. Puso,et al.  A 3D contact smoothing method using Gregory patches , 2002 .

[16]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[17]  Reese E. Jones,et al.  A novel finite element formulation for frictionless contact problems , 1995 .

[18]  Gerhard A. Holzapfel,et al.  Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D , 2004 .

[19]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[20]  Shaker A. Meguid,et al.  Accurate modeling of contact using cubic splines , 2002 .

[21]  R. Taylor,et al.  A mixed formulation for the finite element solution of contact problems , 1992 .

[22]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[23]  P. Wriggers,et al.  Smooth C1‐interpolations for two‐dimensional frictional contact problems , 2001 .

[24]  Peter Wriggers,et al.  Frictionless 2D Contact formulations for finite deformations based on the mortar method , 2005 .

[25]  Tod A. Laursen,et al.  A mortar segment-to-segment frictional contact method for large deformations , 2003 .

[26]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[27]  P. Wriggers,et al.  A C1-continuous formulation for 3D finite deformation frictional contact , 2002 .

[28]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[29]  Panayiotis Papadopoulos,et al.  A Lagrange multiplier method for the finite element solution of frictionless contact problems , 1998 .

[30]  Alexander Konyukhov,et al.  On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry , 2008 .

[31]  J. C. Simo,et al.  A perturbed Lagrangian formulation for the finite element solution of contact problems , 1985 .

[32]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[33]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[34]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.