Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems

The aim of this paper is to construct upwind residual distribution schemes for the time accurate solution of hyperbolic conservation laws. To do so, we evaluate a space-time fluctuation based on a space-time approximation of the solution and develop new residual distribution schemes which are extensions of classical steady upwind residual distribution schemes. This method has been applied to the solution of scalar advection equation and to the solution of the compressible Euler equations both in two space dimensions. The first version of the scheme is shown to be, at least in its first order version, unconditionally energy stable and possibly conditionally monotonicity preserving. Using an idea of Csik et al. [Space-time residual distribution schemes for hyperbolic conservation laws, 15th AIAA Computational Fluid Dynamics Conference, Anahein, CA, USA, AIAA 2001-2617, June 2001], we modify the formulation to end up with a scheme that is unconditionally energy stable and unconditionally monotonicity preserving. Several numerical examples are shown to demonstrate the stability and accuracy of the method.

[1]  P. L. Roe,et al.  Optimum positive linear schemes for advection in two and three dimensions , 1992 .

[2]  L. Fezoui,et al.  A class of implicit upwind schemes for Euler simulations with unstructured meshes , 1989 .

[3]  Rémi Abgrall,et al.  A Lax–Wendroff type theorem for residual schemes , 2001 .

[4]  Rémi Abgrall,et al.  High Order Fluctuation Schemes on Triangular Meshes , 2003, J. Sci. Comput..

[5]  John Van Rosendale,et al.  Upwind and high-resolution schemes , 1997 .

[6]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[7]  P. Brenner,et al.  The Cauchy problem for systems inLp andLp,α , 1973 .

[8]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems , 1986 .

[9]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[10]  Rémi Abgrall,et al.  Residual Distribution Schemes for Conservation Laws via Adaptive Quadrature , 2013, SIAM J. Sci. Comput..

[11]  H. Paillere,et al.  Multidimensional upwind residual distribution schemes for the Euler and Navier-Stokes equations on unstructured grids , 1995 .

[12]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[13]  R. Abgrall,et al.  ENO approximations for compressible fluid dynamics , 1999 .

[14]  Laszlo Fuchs,et al.  Compact Third-Order Multidimensional Upwind Scheme for Navier–Stokes Simulations , 2002 .

[15]  P. Brenner The Cauchy Problem for Symmetric Hyperbolic Systems in Lp. , 1966 .

[16]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[17]  Philip L. Roe,et al.  Compact high‐resolution algorithms for time‐dependent advection on unstructured grids , 2000 .

[18]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[19]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[20]  Philip L. Roe,et al.  A multidimensional generalization of Roe's flux difference splitter for the euler equations , 1993 .

[21]  Fred Wubs,et al.  Computational Fluid Dynamics' 92 , 1992 .

[22]  J. Craggs Applied Mathematical Sciences , 1973 .

[23]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[24]  Kristine R. Meadows,et al.  Computational Study on the Interaction Between a Vortex and a Shock Wave , 1991 .

[25]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[26]  Rémi Abgrall,et al.  Status of multidimensional upwind residual distribution schemes and applications in aeronautics , 2000 .

[27]  Herman Deconinck,et al.  Space-time residual distribution schemes for hyperbolic conservation laws , 2001 .

[28]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[29]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[30]  Philip L. Roe,et al.  Fluctuation splitting schemes for the 2D Euler equations , 1991 .

[31]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[32]  P. Lascaux,et al.  Analyse numérique matricielle appliquée a l'art de l'ingénieur , 1987 .

[33]  Christophe Eric Corre,et al.  A residual-based compact scheme for the compressible Navier-Stokes equations , 2001 .

[34]  Rémi Abgrall,et al.  Toward the ultimate conservative scheme: following the quest , 2001 .

[35]  M M Hafez,et al.  Innovative Methods for Numerical Solution of Partial Differential Equations , 2001 .

[36]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[37]  E. van der Weide Compressible flow simulation on unstructured grids using multi-dimensional upwind schemes , 1998 .

[38]  Gabi Ben-Dor,et al.  Shock wave reflection phenomena , 1992 .