Average Monotonic Cooperative Games

Abstract A subclass of monotonic transferable utility (T.U.) games is studied: average monotonic games. These games are totally balanced. We prove that the core coincides with both the bargaining set a la Davis and Maschler and the bargaining set a la Mas-Colell. To obtain this result a technique based on reduced games is used. Journal of Economic Literature Classification Number: C71

[1]  M. Maschler,et al.  The Structure of the Kernel of a Cooperative Game , 1967 .

[2]  Jean Lemaire,et al.  Cooperative Game Theory and its Insurance Applications , 1991 .

[3]  Javier Arin,et al.  The nucleolus and kernel of veto-rich transferable utility games , 1997 .

[4]  Jean Lemaire,et al.  An Application of Game Theory: Cost Allocation , 1984, ASTIN Bulletin.

[5]  L. Shapley,et al.  The kernel and bargaining set for convex games , 1971 .

[6]  Morton D. Davis,et al.  Existence of stable payoff configurations for cooperative games , 1963 .

[7]  Barry O'Neill,et al.  A problem of rights arbitration from the Talmud , 1982, Math. Soc. Sci..

[8]  D. Schmeidler The Nucleolus of a Characteristic Function Game , 1969 .

[9]  Martin Shubik Essays in Mathematical Economics, in Honor of Oskar Morgenstern , 1967 .

[10]  Hans Reijnierse,et al.  Γ-component additive games , 1995 .

[11]  Josep Maria,et al.  Análisis de soluciones para juegos cooperativos de valores medios crecientes respecto a un vector: juegos financieros , 1996 .

[12]  Lin Zhou,et al.  A New Bargaining Set of an N-Person Game and Endogenous Coalition Formation , 1994 .

[13]  L. Shapley Cores of convex games , 1971 .

[14]  Yves Sprumont Population monotonic allocation schemes for cooperative games with transferable utility , 1990 .

[15]  Morton D. Davis,et al.  The kernel of a cooperative game , 1965 .

[16]  A. Mas-Colell An equivalence theorem for a bargaining set , 1989 .